Material Related Prerequisites for Chalcopyrite Based Thin Film Solar Cells

Abstract

This contribution reviews the present state of understanding of material properties of chalcopyrite based thin films in respect of application in solar cells. Specific properties of the surface and grain boundaries as well as the back contact have direct consequences for device operation. Surface reconstruction results in Cu depletion of the surface and provokes formation of an intrinsically graded structure. New information about the depth of Cu depleted surface layer is derived from grazing incidence x-ray diffraction. The origin of the charge necessary for an inversion of the surface is still open. In this context, we summarize and evaluate controversial discussions about extrinsic doping by diffusion of donors from partial electrolytes or from the buffer layer. Further open questions are the origin for low recombination velocity at grain boundaries and favorable properties of the back contact and its relation to the interface with back contact materials.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    J.-F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, J. Phys. Chem. B 104, 4849–4862 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    J.-F. Guillemoles, U. Rau, L. Kronik, H. W. Schock, and D. Cahen, Adv. Mat. 11, 957 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    Cu(In,Ga)Se2 solar cells, U. Rau and H. W. Schock: in Clean Electricity from Photovoltaics, edited by M. D. Archer, R. Hill (Imperial College Press, London, U. K., 2001) p. 277.

  4. 4.

    U. Rau and H. W. Schock, Appl. Phys. A. 69, 131 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    H.W. Schock, R. Noufi, Prog. Photovolt. Res. Appl. 8, 151–160 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    A. Jasenek, H. W. Schock, J. H. Werner, and U. Rau, Appl. Phys. Lett. 79, 2922–2924 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Yan, K. M. Jones, J. Abushama, M. Young, S. Asher, M. M. Al-Jassim, and R. Noufi, Appl. Phys. Lett. 65, 1008 (2002).

    Article  Google Scholar 

  8. 8.

    M. J. Romero, M. M. Al-Jassim, R. G. Dhere, F. S. Hasoon, M. A. Contreras, T. A. Gessert and H. R. Moutinho, Prog. Photovolt: Res. Appl. 10, 445–455, (2002).

    CAS  Article  Google Scholar 

  9. 9.

    H. W. Schock and U. Rau, Physica B, 308–310, 1081 (2002).

    Article  Google Scholar 

  10. 10.

    G. Hanna, J. Mattheis, Y. Yamamoto, U. Rau, H.W. Schock, Proc. EMRS 2002, Thin Solid Films, in press.

  11. 11.

    Hedström J., Ohlsen, H., Bodegard M., Kylner A., Stolt L., Hariskos D., Ruckh M. and Schock H.-W. (1993), Conf. Record 23rd. IEEE Photovoltaic Specialists Conf., Louisville, IEEE Press, Piscataway, p. 371.

    Google Scholar 

  12. 12.

    D. Braunger, D. Hariskos, G. Bilger, U. Rau, and H. W. Schock, Thin Solid Films 361–362, 161 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    D. J. Schroeder and A. A. Rockett. J. Appl. Phys. 82, 5982–5985 (1997).

    Article  Google Scholar 

  14. 14.

    A. Tiwari, presented at MRS spring meeting, 2003.

  15. 15.

    R. Herberholz, U. Rau, H. W. Schock, T. Haalboom, T. Gödecke, F. Ernst, C. Beilharz, K. W. Benz, and D. Cahen, Euro. Phys. J. AP 6, 131 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Tokita, S. Chaisitsak, H. Miyazaki, R. Mikami, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys. 41, 7407–7412 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    T. Dullweber, G. Hanna, U. Rau, and H. W. Schock, Solar Energy Materials and Solar Cells 67, 145–150 (2001)

    CAS  Article  Google Scholar 

  18. 18.

    D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, J. Appl. Phys. 73, 2902–2909 (1993)

    CAS  Article  Google Scholar 

  19. 19.

    I. Koetschau, PhD Thesis, Stuttgart, 2003.

  20. 20.

    I. Koetschau, H.W. Schock, presented at MRS spring meeting, 2003.

  21. 21.

    S. B. Zhang, S.H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B. 57, 9642 (1998)

    CAS  Article  Google Scholar 

  22. 22.

    Q. Nguyen, K. Orgassa, I. Koetschau, U. Rau, H. W. Schock, Proc. EMRS 2002, Thin Solid Films in press.

  23. 23.

    Q. Nguyen, G. Bilger, U. Rau, H.W. Schock, presented at MRS spring meeting, 2003.

  24. 24.

    U. Rau, M. Turcu, presented at MRS spring meeting, 2003.

  25. 25.

    A. Niemegeers and M. Burgelman, Proc. of the 25th IEEE Photov. Spec. Conf. (IEEE New York, 1996) p. 901.

    Google Scholar 

  26. 26.

    T. Wada, Solar Energy Materials and Solar Cells 49, 249 (1997).

    CAS  Article  Google Scholar 

  27. 27.

    T. Dullweber, O. Lundberg, J. Malmström, M. Bodegard, L. Stolt, U. Rau, H. W. Schock, and J. H. Werner, Thin Solid Films 387, 11–13 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    O. Lundberg, M. Bodegard, J. Malmström, L. Stolt, Prog. Photovolt: Res. Appl. 11, 77–88 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    K. Orgassa, H.W. Schock, J. H. Werner, Proc. EMRS 2002, Thin Solid Films, in press.

  30. 30.

    M. Vögt, M.Ch. Lux-Steiner, H.-P. Schweikardt, P. Dolatzoglou, M. Keil, W. Reetz and E. Bucher, Proc. 4th Int. PVSEC Conf., Sydney, Australia (1989), p. 493.

  31. 31.

    T. Nakada, Y. Hirabayashi and T. Tokado, Jpn. J. Appl. Phys. 41, L 1209–L1211 (2002).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans-Werner Schock.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schock, HW. Material Related Prerequisites for Chalcopyrite Based Thin Film Solar Cells. MRS Online Proceedings Library 763, 16 (2002). https://doi.org/10.1557/PROC-763-B1.6

Download citation