Abstract
A ramsdellite with composition LiCrTiO4 has been obtained by heating the spinel of same composition to high temperature. The new ramsdellite has been investigated in view of its possible use as an electrode material in lithium rechargeable batteries. Lithium can be partially extracted from ramsdellite LiCrTiO4 and further intercalated into, by contrast to the spinel of same composition. The average operating voltage during lithium extraction is 4 Volts vs. lithium, and the process produces a specific capacity of 90 mAh/g at 0.1 mA/cm2. On the other hand, upon reduction from open circuit voltage, lithium can be reversibly intercalated into the ramsdellite polymorph at ca. 1.5 V vs. lithium yielding a rechargeable capacity of 110 mAh/g at 0.1 mA/cm2.
This is a preview of subscription content, access via your institution.
References
- 1.
B. Zachau-Christiansen, K. West, T. Jacobsen and S. Skaarup, Solid State Ionics 53–56, 364–369 (1992).
- 2.
F. García-Alvarado, M.E. Arroyo y de Dompablo, E. Morán, M.T. Gutiérrez, A. Kuhn and A. Várez, J. Power Sources 81–82, 85 (1999).
- 3.
L.D. Noailles, C.S. Johnson, J.T. Vaughey and M.M. Thackeray, J. Power Sources 81–82, 259–263 (1999)
- 4.
K.M. Colbow, J.R. Dahn and R.R. Haering, J. Power Sources 26, 397–402 (1989).
- 5.
M.E. Arroyo y de Dompablo, E. Morán, A. Várez and F. García-Alvarado, Mat. Res. Bull. 32(8), 993–1001 (1997).
- 6.
M.M. Thackeray, A. De Kock, M.H Rossouw and D. Liles, J. Electrochem. Soc. 139, 363–366 (1992).
- 7.
R.K.B. Gover, J.T.S. Irvine and A.A. Finch, J. Solid State Chem. 132, 382–388 (1997).
- 8.
J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai and K. Aoki, J. Solid State Chem. 113, 27–36 (1994).
- 9.
R. Amandi, A. Kuhn and F. García-Alvarado, presented at the 7th European Conference on Solid State Chemistry, Madrid (Spain) 1999 (unpublished).
- 10.
R.K.B. Gover, J.R. Tolchard, H. Tukamoto, T. Murai and J.T.S. Irvine, J. Electrochem. Soc. 146(12), 4348–4353 (1999).
- 11.
A. Kuhn, R. Amandi and F. García-Alvarado, J. Power Sources 92, 221–227 (2001).
- 12.
T. Hayakawa, D. Shimada and N. Tsuda, J. Phys. Soc. Jap. 58(8), 2867–2876 (1989).
- 13.
G. Blasse, J. Inorg. Nucl. Chem. 25, 230 (1963).
- 14.
P.M. Lambert, P.P. Edwards, and M.R. Harrison, J. Solid State Chem. 89, 345 (1990).
- 15.
S. Scharner and W. Weppner, J. Solid State Chem. 134, 170–181 (1997).
- 16.
F. García-Alvarado, A. Kuhn and M. Martín-Gil, Bol. Soc. Esp. Cer. Vidrio 41, 385–392 (2002)
- 17.
J. Rodríguez-Carvajal, Fullprof Manual, Institute Laue-Langevin, Grenoble France (1992).
- 18.
H.M. Rietveld, Cryst. 22, 151 (1967); J. Appl. Cryst. 65, 2 (1969).
- 19.
T. Ohzuku, K. Tatsumi, N. Matoba and K. Sawai, J. Electrochem. Soc. 147(10), 3592–3597 (2000).
- 20.
B. Ammundsen, J. Paulsen, I. Davidson, R. Liu, C. Shen, J. Chen and J. Lee, J. Electrochem. Soc. 149, A431–A436 (2002).
- 21.
M. Balasubramanian, J. McBreen, I.J. Davidson, P. S. Whitfield and I. Kargina, J. Electrochem. Soc. 149, A176–A184 (2002).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
García-Alvarado, F., Martín-Gil, M. & Kuhn, A. Synthesis and Electrochemical Behaviour of Ramsdellite LiCrTiO4. MRS Online Proceedings Library 756, 79 (2002). https://doi.org/10.1557/PROC-756-EE7.9
Published: