Surface properties of disordered γ MnO2 at the solid-electrolyte interface.


Relationships between lattice parameters of manganese dioxides (γ/ε-MD) and their surface properties at the solid-aqueous solution interface were investigated. The studied series ranged from orthorhombic ramsdellite to tetragonal pyrolusite and encompassed disordered MD samples. The structural model used takes into account two structural defects which affect the orthorhombic network of ramsdellite: Pr (rate of pyrolusite intergrowth) and Tw (rate of microtwinning). Water adsorption isotherms showed that the cross sectional surface area of water molecules is linearly correlated to Pr: from 6.3 Å2 (Pr=0.2) to 13.1 Å2 (Pr=1). Titration of their surface charge evidenced a linear relationship between PZC and Pr starting from ramsdellite (Pr = 0, Tw = 0, PZC = 1) to pyrolusite (Pr = 1, Tw = 0, PZC = 7.3). γ-MD with intermediate values of Pr (0.2 to 0.45) have increasing PZC values. For similar Pr values (0.45), high Tw percentage (0.3 and 1) makes the PZC to increase. The experimental results are compared with data collected in the literature for dioxides of transition elements with tetragonal structure. Surface titration leads to the determination of electrochemically active surface area at alkaline pH.

This is a preview of subscription content, access via your institution.


  1. 1.

    C. Poinsignon, F. Tedjar, J.M. Amarilla, J. Mater. Chem‥ 12, 1227 (1993).

    Article  Google Scholar 

  2. 2.

    Y. Chabre, and J. Pannetier, Prog. Solid St. Chem. 23, 1 (1995).

    CAS  Article  Google Scholar 

  3. 3.

    L. McLean, C. Poinsignon, J.M. Amarilla, F. Lecras, and P. Strobel, J. Mater. Chem. 8, 1183 (1995).

    Article  Google Scholar 

  4. 4.

    E. Djurado, E. Meunier J. Solid Stat Chem. 141, 191–198,(1998).

    CAS  Article  Google Scholar 

  5. 5.

    B. Prélot, C. Poinsignon, F. Thomas, F. Villiéras, J. Colloid Interface Sci. in press (2002).

  6. 6.

    J.E. Poirier, M. François, J.M. Cases, and J. Rouquerol, In: Proceedings of the second engineering foundation conference on fundamental adsorption. A.I. Liapis (ed.). New York. AIChE Pub., 473–482, 1987.

  7. 7.

    A.M. Byström, Acta Chem. Scand. 3, 163 (1949).

    Article  Google Scholar 

  8. 8.

    W.H. Baur, Acta Cryst. 32, 2000 (1976).

    Article  Google Scholar 

  9. 9.

    J. Hagymassy Jr, S. Brunauer, and R.S. Mikhail, J. Colloid and Interface Sci. 29, 485 (1969).

    CAS  Article  Google Scholar 

  10. 10.

    W.C. Maskell, J.E.A. Shaw, F.L. Tye J. App. Electrochem. 12, 101, (1982).

    CAS  Article  Google Scholar 

  11. 11.

    A. Carre, F. Roger, and C. Varinot, J. Colloid and Interface Sci. 154, 174 (1992).

    CAS  Article  Google Scholar 

  12. 12.

    H. Tamura, T. Oda, M. Katayama, and R. Furuichi, Environ. Sci. Technol. 30, 1198 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    L. Pauling, “The nature of the chemical bond“. 3rd Edition, Cornell University Press, Ithaca, N.Y. 1960.

    Google Scholar 

  14. 14.

    G.A. Parks, Chem. Review 65, 153 (1965).

    Article  Google Scholar 

  15. 15.

    R.H. Yoon, T. Salman, and G. Donnay, J. Colloid and Interface Sci. 70, 483 (1979).

    CAS  Article  Google Scholar 

  16. 16.

    W. Bleam, J. Colloid and Interface Sci. 159, 312 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    T. Hiemstra, J.C.M. de Witt, and W.H. Van Riemsdjik, J. Colloid Interface Sci. 133, 91 (1989).

    CAS  Article  Google Scholar 

  18. 18.

    T.W. Healy, A.P. Herring, and D.W. Fuerstenau, J. Colloid Interface Sci. 21, 435 (1966).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bénédicte Prélot.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prélot, B., Poinsignon, C., Thomas, F. et al. Surface properties of disordered γ MnO2 at the solid-electrolyte interface.. MRS Online Proceedings Library 756, 52 (2002).

Download citation