New Results for Electron Transport, Chemical Diffusion and Stability of Solid Oxygen Ion Conductors

Abstract

We describe the measurement of electronic conductivity of solid oxide electrolytes by a modified Hebb-Wagner technique based on the use of blocking microelectrodes. Results are presented for a couple of typical solid oxide electrolyte systems mainly derived from ceria and lanthanum gallate. The examples demonstrate a good resolution of the microelectrode technique in particular within the electrolyte domain, i.e. around the minimum of the electronic conductivity. This made possible the detection of deviations from the predicted oxygen partial pressure dependence of simple defect models for the concentrations of electrons and holes. The observed deviations from these defect models, at least partially, reflect the overemphasized ideality of the usually applied semiconductor model.

Whereas the effect of dissolved transition metals with variable valence states such as Fe, and Co on the electronic conduction is well known, it was unexpected to find a strong concentration dependent effect of dopants like Y3+ and Zr4+ in ceria or Mg2+ and Sr2+ in the gallates upon the electronic conductivity within the electrolytic domain. Ions like Y3+ and Zr4+ cause a shift and a partial broadening of electronic states in ceria based materials. Indications have been found for band tailing due to high defect concentrations. In some cases, the dopants cause the appearance of additional localized electron states in the gap which give rise to weak superimposed maxima of the electronic conductivity at a particular oxygen partial pressure within the electrolytic domain.

Accordingly, one cannot expect that electronic conductivities of solid electrolytes are insensitive to a changing concentration of stabilizers such as Y, Ca, etc. For instance, even a moderate doping of ceria by zirconia leads to a considerable electronic excess conductivity in the electrolytic domain.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. H. Hebb, J. Chem. Phys. 20, 1952 (1952).

    Article  Google Scholar 

  2. 2.

    C. Wagner, in Proc. of the 7th Meeting of the International Committee on Electrochemical Thermodynamics and Kinetics, Lindau, 1955), p. p. 361ff.

    Google Scholar 

  3. 3.

    H. Schmalzried, Z. Phys. Chem. N.F. 38, 87 (1963).

    CAS  Article  Google Scholar 

  4. 4.

    J. B. Wagner and C. Wagner, J. Chem. Phys. 26, 1597 (1957).

    CAS  Article  Google Scholar 

  5. 5.

    B. Ilschner, J. Chem. Phys. 28, 1109 (1958).

    CAS  Article  Google Scholar 

  6. 6.

    J. W. Patterson, E. C. Bogren, and R. A. Rapp, J. Electrochem. Soc. 114, 752 (1967).

    CAS  Article  Google Scholar 

  7. 7.

    L. D. Burke, H. Rickert, and R. Steiner, Z. phys. Chem. N.F. 74, 146 (1971).

    CAS  Article  Google Scholar 

  8. 8.

    L. Heyne and N. M. Beekmans, Proceedings of the British Ceramic Society 19, 229 (1971).

    Google Scholar 

  9. 9.

    F. Schilling, U. Vohrer, H.-D. Wiemhoefer, J. Arndt, and W. Goepel, Sensors and Actuators B 4, 411 (1991).

    Article  Google Scholar 

  10. 10.

    U. Vohrer, H.-D. Wiemhoefer, W. Goepel, B. A. van Hassel, and A. J. Burggraaf, Solid State Ionics 59, 141 (1993).

    CAS  Article  Google Scholar 

  11. 11.

    X. Guo and J. Maier, Solid State Ionics 130, 267 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    K. Kobayashi, S. Yamaguchi, T. Higuchi, S. Shin, and Y. Iguchi, Solid State Ionics 135, 643 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    K. Sasaki and J. Maier, Solid State Ionics 134, 303 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    T. S. Stefanik and H. L. Tuller, Journal of the European Ceramic Society 21, 1967 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    P. Knauth and H. L. Tuller, Solid State Ionics 136, 1215 (2000).

    Article  Google Scholar 

  16. 16.

    O. Porat, M. A. Spears, C. Heremans, I. Kosacki, and H. L. Tuller, Solid State Ionics 86–88, 285 (1996).

    Article  Google Scholar 

  17. 17.

    H. L. Tuller, Solid State Ionics 94, 63 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    H. Nafe, Solid State Ionics 59, 5 (1993).

    Article  Google Scholar 

  19. 19.

    N. J. Long, F. Lecarpentier, and H. L. Tuller, Journal of Electroceramics 3, 399 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    N. Trofimenko and H. Ullman, Solid State Ionics 118, 215 (1999).

    CAS  Article  Google Scholar 

  21. 21.

    H. Ullmann, N. Trofimenko, A. Naoumidis, and D. Stover, Journal of the European Ceramic Society 19, 791 (1999).

    CAS  Article  Google Scholar 

  22. 22.

    K. Schindler, D. Schmeiβer, U. Vohrer, H.-D. Wiemhoefer, and W. Goepel, Sensors and Actuators 17, 555 (1989).

    CAS  Article  Google Scholar 

  23. 23.

    H.-D. Wiemhoefer and U. Vohrer, Ber. Bunsenges. Phys. Chem. 96, 1646 (1992).

    CAS  Article  Google Scholar 

  24. 24.

    H.-D. Wiemhoefer, S. Harke, and U. Vohrer, Solid State Ionics 40/41 (1990).

  25. 25.

    P. W. Anderson, Physical Review 109, 1492 (1958).

    CAS  Article  Google Scholar 

  26. 26.

    S. N. Mott, M. Pepper, S. Pollitt, R. H. Wallis, and C. J. Adkins, Proc. Roy. Soc. Lond. A 345, 169 (1975).

    CAS  Article  Google Scholar 

  27. 27.

    S. Luebke and H. D. Wiemhoefer, Solid State Ionics 117, 229 (1999).

    Article  Google Scholar 

  28. 28.

    J. Weitkamp and H.-D. Wiemhoefer, Solid State Ionics 154–155C, 597 (2002).

    Article  Google Scholar 

  29. 29.

    S. Luebke and H. D. Wiemhoefer, Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 102, 642 (1998).

    CAS  Article  Google Scholar 

  30. 30.

    J. H. Lee, S. M. Yoon, B. K. Kim, H. W. Lee, and H. S. Song, Journal of Materials Science 37, 1165 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, Y. P. Xiong, T. Otake, H. Yugami, T. Kawada, and J. Mizusaki, Journal of Phase Equilibria 22, 331 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    Y. P. Xiong, K. Yamaji, N. Sakai, H. Negishi, T. Horita, and H. Yokokawa, Journal of the Electrochemical Society 148, E489 (2001).

    CAS  Article  Google Scholar 

  33. 33.

    N. Sakai, T. Hashimoto, T. Katsube, K. Yamaji, H. Negishi, T. Horita, H. Yokokawa, Y. P. Xiong, M. Nakagawa, and Y. Takahashi, Solid State Ionics 143, 151 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    J. H. Lee, S. M. Yoon, B. K. Kim, J. Kim, H. W. Lee, and H. S. Song, Solid State Ionics 144, 175 (2001).

    CAS  Article  Google Scholar 

  35. 35.

    K. Kawamura, K. Watanabe, T. Hiramatsu, A. Kaimai, Y. Nigara, T. Kawada, and J. Mizusaki, Solid State Ionics 144, 11 (2001).

    CAS  Article  Google Scholar 

  36. 36.

    C. E. Hori, K. Y. S. Ng, A. Brenner, K. M. Rahmoeller, and D. Belton, Brazilian Journal of Chemical Engineering 18, 23 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    A. Tsoga, A. Naoumidis, and D. Stover, Solid State Ionics 135, 403 (2000).

    CAS  Article  Google Scholar 

  38. 38.

    T. Otake, H. Yugami, H. Naito, K. Kawamura, T. Kawada, and J. Mizusaki, Solid State Ionics 135, 663 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H.-D. Wiemhoefer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wiemhoefer, HD., Dogan, M., Luebke, S. et al. New Results for Electron Transport, Chemical Diffusion and Stability of Solid Oxygen Ion Conductors. MRS Online Proceedings Library 756, 16 (2002). https://doi.org/10.1557/PROC-756-EE1.6

Download citation