Molecular Dynamics Computer Simulations of Calcium-Alumino-Silicate Intergranular Films between the basal and prism planes of α-Al2O3

Abstract

Molecular dynamics computer simulations using a robust multibody potential were used to study the structure of the intergranular films (IGFs) formed between two different crystallographic orientations of α-Al2O3 crystals. The simulations show a localized ordering of the IGF at the interface of both the basal and prism planes caused by preferential adsorption of specific ions from the IGF onto the crystal planes. However, the results of the adsorption have significantly different effects on crystal growth of the specific orientations. The preferential adsorption of Ca ions from the IGF onto the (0001) surface inhibit growth in the <0001> direction. However, Ca does not affect adsorption of O and Al from the IGF onto the (1120) surface and potential growth of this orientation in the <1120> direction. The results are consistent with experimental data regarding anisotropic grain growth in this system and provide an atomistic view of this behavior.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kleebe, H.-J. Structure and Chemistry of Interfaces in Si3N4 Ceramics Studied by Transmission Electron Microscopy. J. Ceram. Soc. Japan 105, 453–475 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    Kleebe, H.-J., Cinibulk, M. K., Cannon, R. M. & Rühle, M. Statistical Analysis of the Intergranular Film Thickness in Silicon Nitride Ceramics. J. Am. Ceram. Soc. 76, 1969–1077 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    Pezzotti, G. et al. Chemistry and inherent viscosity of glasses segregated at grain boundaries of silicon nitride and silicon carbide ceramics. Journal of Non-Crystalline Solids 271, 79–87 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    Gu, H., Cannon, R. M. & Ruhle, M.composition and chemical width of ultra-thin amorphous films at grain boundaries in silicon nitride. J. Mater. Res. 13, 376–387 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    Gu, H. Variation of width and composition of grain-boundary film in a high purity silicon nitride with minimal silica. J. Am. Ceram. Soc. 85, 33–37 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    Ching, W.-Y., Mo, S.-D. & Chen, Y. Calculation of XANES/ELNES spectra of all edges in Si3N4 and Si2N2O. J. Am. Ceram. Soc. 85, 11–15 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    Painter, G. S., Becher, P. F. & Sun, E. Y. Bond energetics at intergranular interfaces in alumina-doped silicon nitride. J. Am. Ceram. Soc. 85, 65–67 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    Yoshiya, M., Tatsumi, K., Tanaka, I. & Adachi, H. Theoritical study on the chemistry of intergranular glassy film in Si3N4–SiO2 ceramics. J. Am. Ceram. Soc. 85 (2002).

  9. 9.

    Ramamurthy, S., Schmalzried, H. & Carter, C. B. Interaction of silicate liquid with a sapphire surface. Phil Mag A 80, 2651–2674 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    Bae, S. I. & Baik, S. Determination of Critical Concentrations of Silica and/or Calcia for Abnormal Grain Growth in Alumina. J. Am. Ceram. Soc. 76, 1065–1067 (1993).

    CAS  Article  Google Scholar 

  11. 11.

    Bae, S. I. & Baik, S. Abnormal Grain Growth of Alumina. J. Am. Ceram. Soc. 80, 1149–56 (1997).

    CAS  Article  Google Scholar 

  12. 12.

    Bennison, S. J. & Harmer, M. P. Grain-Growth Kinetics for Alumina in the Absence of a Liquid Phase. J. Am. Ceram. Soc. 68, C-22 - C-24 (1985).

    CAS  Article  Google Scholar 

  13. 13.

    Handwerker, C. A., Morris, P. A. & Coble, R. L. Effects of Chemical Inhomogeneities on Grain Growth and Microstructure in Al2O3. J. Am. Ceram. Soc. 72, 130–36 (1989).

    CAS  Article  Google Scholar 

  14. 14.

    Kaysser, W. A., Sprissler, M., Handwerker, C. A. & Blendell, J. E. Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina. J. Am. Ceram. Soc. 70, 339–43 (1987).

    CAS  Article  Google Scholar 

  15. 15.

    Susnitzky, D. W. & Carter, C. B. Structure of Alumina Grain Boundaries Prepared with and without a Thin Amorphous Intergranular Film. J. Am. Ceram. Soc. 73, 2485–93 (1990).

    CAS  Article  Google Scholar 

  16. 16.

    Powell-Dogan, C. A. & Heuer, A. H. Microstructure of 96% Alumina Ceramics: III, Crystallization of High-Calcia Boundary Glasses. J. Am. Ceram. Soc. 73, 3684–91 (1990).

    CAS  Article  Google Scholar 

  17. 17.

    Chou, T. C. & Nieh, T. G. Interface-controlled phase transformation and abnormal grain growth of alpha-Al2O3 in thin alpha-alumina films. Thin solid films 221, 89–97 (1992).

    CAS  Article  Google Scholar 

  18. 18.

    Blonski, S. & Garofalini, S. H. Molecular Dynamics Study of Silica-Alumina Interfaces. J. Phys. Chem. 100, 2201–2205 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    Litton, D. A. & Garofalini, S. H. Atomistic Structure of Sodium and Calcium Silicate Intergranular Films in Alumina by Molecular Dynamics. J. Mat. Res. 14, 1418–1429 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    Litton, D. A. & Garofalini, S. H. Molecular Dynamics Simulations of Calcium Alumino-Silicate Intergranular Films on (0001) Alumina Faces. J. Am. Ceram. Soc. 83, 2273–2281 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    Blonski, S. & Garofalini, S. H. Molecular Dynamics Simulations of a -alumina and g -alumina Surfaces. Surf. Sci. 295, 263–274 (1993).

    CAS  Article  Google Scholar 

  22. 22.

    Mackrodt, W. C., Davey, R. J., Black, S. N. & Docherty, R. The Morphology of a -Al2O3 and a -Fe2O3: The Importance of Surface Relaxation. J. Crystal Growth 80, 441–446 (1987).

    CAS  Article  Google Scholar 

  23. 23.

    Batirev, I. G., Alavi, A., Finnis, M. W. & Deutsch, T. First principles calculations of the ideal cleavage energy of bulk niobium(111)/alpha-alumina(0001)interfaces. Phys. Rev. Lett. 82, 1510–1513 (1999).

    CAS  Article  Google Scholar 

  24. 24.

    Batirev, I. G., Alavi, A. & Finnis, M. W. Ab initio calculations of the Al2O3 (0001) surface. Faraday Discuss. 114, 33–43 (2000).

    Article  Google Scholar 

  25. 25.

    Ravishankar, N. & Carter, C. B. Migration of alumina grain boundaries containing a thin glass film. Acta Mater 49, 1963–1969 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    Blonski, S. & Garofalini, S. H. Atomistic Structure of Calcium Silicate Intergranular Films in Alumina Studied by Molecular Dynamics Simulations. J. Am. Ceram. Soc. 80, 1997–2004 (1997).

    CAS  Article  Google Scholar 

  27. 27.

    Feuston, B. P. & Garofalini, S. H. Empirical Three-Body Potential for Vitreous Silica. J. Chem. Phys. 89, 5818–5824 (1988).

    CAS  Article  Google Scholar 

  28. 28.

    Garcia, M. & Garofalini, S. H. Molecular Dynamics Simulation of the Effect of Crystal Orientation on Lithium Ion Diffusion at the V2O5/Li2SiO3 Interface. J. Electrochem. Soc. 146, 840–849 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    Garofalini, S. H. & Martin, G. Molecular Simulations of the Polymerization of Silicic Acid Molecules and Network Formation. J. Phys. Chem. 98, 1311–1316 (1994).

    CAS  Article  Google Scholar 

  30. 30.

    Webb, E. B. & Garofalini, S. H. Relaxation of Silica Glass Surfaces Before and After Stress Modification in Wet and Dry Atmospheres: Molecular Dynamics Simulations. J. Non-Cryst. Sol. 226, 47–57 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    Zirl, D. M. & Garofalini, S. H. Structure of Sodium-Aluminosilicate Glasses. J. Am. Ceram. Soc. 73, 2848–2856 (1990).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Garofalini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garofalini, S.H., Zhang, S. Molecular Dynamics Computer Simulations of Calcium-Alumino-Silicate Intergranular Films between the basal and prism planes of α-Al2O3. MRS Online Proceedings Library 751, 48 (2002). https://doi.org/10.1557/PROC-751-Z4.8

Download citation