First-principles calculation of the effect of strain on the diffusion of Ge adatoms on Si and Ge (001) surfaces

Abstract

First-principles calculations are used to calculate the strain dependencies of the binding and diffusion-activation energies for Ge adatoms on both Si(001) and Ge(001) c(4×2) reconstructed surfaces. Our calculations reveal that over the range of strains typically sampled during quantum dot self-assembly (0 to 1% compressive strain) the binding and activation energies on a strained Ge(001) surface increase and decrease, respectively, by 0.21 eV and 0.12 eV. For a growth temperature of 600 °C, these strain-dependencies give rise to a 16-fold increase in adatom density and a 5-fold decrease in adatom diffusivity in the region of compressive strain surrounding a Ge island with a characteristic size of 10 nm lying on top of a Si substrate covered by a Ge wetting layer.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. M. Dalpian, A. Fazzio, and A. J. R. daSilva. Phys. Rev. B, 63: 205303, 2001.

  2. [2]

    I. Daruka and A.-L. Barabási. Phys. Rev. Lett., 79: 3708, 1997.

  3. [3]

    D. J. Eaglesham and M. Cerullo. Phys. Rev. Lett., 64: 1943–1946, 1990.

  4. [4]

    J. A. Floro, E. Chason, R. D. Twesten, R. Q. Hwang, and L. B. Freund. Phys. Rev. Lett., 79: 3946, 1997.

  5. [5]

    H. Jonsson G. Mills and G. K. Schenter. Surf. Sci., 324: 305, 1995.

  6. [6]

    G. Mills H. Jonsson and K. W. Jacobsen. Nudged elastic band method for finding minimum energy paths of transitions. In B. J. Berne, G. Ciccotti, and D. F. Coker, editors, Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, 1998.

  7. [7]

    E. Kaxiras. Comput. Mat. Sci., 6: 158–172, 1996.

  8. [8]

    N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. Madhukar. Appl. Phys. Lett., 68: 3299, 1996.

  9. [9]

    H. M. Koduvely and A. Zangwill. Phys. Rev. B, 60: R2204, 1999.

  10. [10]

    P. Kratzer, E. Penev, and M. Scheffler. Appl. Phys. A, 75: 79, 2002.

  11. [11]

    G. Kresse and J. Furthmüller. Comput. Mat. Sci., 6: 15, 1996.

  12. [12]

    G. Kresse and J. Furthmüller. Phys. Rev. B, 54: 11169, 1996.

  13. [13]

    F. Liu, F. Wu, and M. G. Lagally. Chem. Rev., 97: 1045, 1997.

  14. [14]

    A. Madhukar. J. Cryst. Growth, 163: 149, 1996.

  15. [15]

    K. Mea. Thin Solid Films, 395: 235, 2001.

  16. [16]

    G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams. Science, 279: 353–355, 1998.

  17. [17]

    V. Milman. Int. J. of Quan. Chem., 61: 719–724, 1997.

  18. [18]

    V. Milman, D. E. Jesson, S. J. Pennycook, M. C. Payne, M. H. Lee, and I. Stich. Phys. Rev. B, 50: 2663–2666, 1994.

  19. [19]

    V. Milman, S. J. Pennycook, and D. E. Jesson. Thin Solid Films, 272: 375–385, 1996.

  20. [20]

    Y. W. Mo and M. G. Lagally. Surf. Sci., 248: 313–320, 1991.

  21. [21]

    Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally. Phys. Rev. Lett., 65: 1020–1023, 1990.

  22. [22]

    N. Moll, M. Scheffler, and E. Pehlke. Phys. Rev. B, 58: 4566, 1998.

  23. [23]

    E. Penev, P. Kratzer, and M. Scheffler. Phys. Rev. B, 64: 085401, 2001.

  24. [24]

    J. C. Phillips and L. Kleinman. Phys. Rev., 116: 287, 1959.

  25. [25]

    C. Ratsch, A. P. Seitsonen, , and M. Scheffler. Phys. Rev. B, 55: 6750–6753, 1997.

  26. [26]

    C. Roland and G. H. Gilmer. Phys. Rev. B, 46: 13428–13436, 1992.

  27. [27]

    F. M. Ross, J. Tersoff, and R. M. Tromp. Phys. Rev. Lett., 80: 984–987, 1998.

  28. [28]

    F. M. Ross, R. M. Tromp, and M. C. Reuter. Science, 286: 1931–1934, 1999.

  29. [29]

    M. Schroeder and D. E. Wolf. Surf. Sci., 375: 129–140, 1997.

  30. [30]

    V. A. Shchukin and D. Bimbert. Rev. Mod. Phys., 71: 1125–1171, 1999.

  31. [31]

    D. J. Shu, F. Liu, and X. G. Gong. Phys. Rev. B, 64: 245410, 2001.

  32. [32]

    A. P. Smith, J. K. Wiggs, H. Jonsson, H. Yan, L. R. Corrales, P. Nachtigall, and K. D. Jordan. Journal Of Chemical Physics, 102: 1044–1056, 1995.

  33. [33]

    B. J. Spencer, P. W. Voorhees, and S. H. Davis. J. Appl. Phys., 73: 4955, 1993.

  34. [34]

    H. Spjut and D. A. Faux. Surf. Sci., 306: 233, 1994.

  35. [35]

    J. Tersoff, C. Teichert, and M. G. Lagally. Phys. Rev. Lett., 76: 1675, 1996.

  36. [36]

    J. Tersoff and R. M. Tromp. Phys. Rev. Lett., 70: 2782, 1993.

  37. [37]

    D. Vanderbilt. Phys. Rev. B, 41: 7892, 1990.

  38. [38]

    R. S. Williams, G. Medeiros-Ribeiro, T. I. Kamins, and D. A. A. Ohlberg. Annu. Rev. Phys. Chem., 51: 527, 2000. and references therein.

  39. [39]

    E. Zoethout, O. Gürlü, H. J. W. Zandlivet, and B. Poelsema. Surf. Sci., 452: 247–252, 2000.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. van de Walle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van de Walle, A., Asta, M. & Voorhees, P.W. First-principles calculation of the effect of strain on the diffusion of Ge adatoms on Si and Ge (001) surfaces. MRS Online Proceedings Library 749, 2010 (2002). https://doi.org/10.1557/PROC-749-W20.10

Download citation