Metal-Oxide Interfacial Evolution in Thermally Grown Oxide Films


The metal-oxide interface is a crucial zone in the fundamental understanding of oxide growth and growth instabilities. However, obtaining fundamental information on this buried interface has proven extremely difficult using modern surface and interfacial characterization methods. Using copper oxide growth over copper metal, examined between RT and 250°C, as a model system, we have delineated the fundamental physical chemical processes that determine the oxide growth and instabilities at the metal-oxide interface. Application of controlled thermal growth studies in combination with linear sweep voltammetry (LSV) has allowed experimental access to the metal-oxide interface with surprising characterization capabilities. The methodologies involved and the physical chemical phenomena will be discussed in context of the application of modern surface characterization methods including pulsed field desorption mass spectrometry, XPS combined with depth profiling and angular resolved methods. The evolution and alteration of the precursor oxide that develops at low temperatures <75°C will be explained on the basis of previously observed metal oxide interfacial phenomena involving coupled bulk and surface reactions. The nature of the interfacial zone will be discussed with electron transfer and oxygen absorption models that are applicable to oxide growth and instabilities in general.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. [1]

    F. P. Netzer, Surface Review and Letters 9, 1553 (2002).

    CAS  Article  Google Scholar 

  2. [2]

    Cocke D. Electrochemical, Thermal, and Plasma Preparation of Oxide Coatings, Theory and Practice, in Proceedings of XXII Congresso Internaciaonal de Metalurgia y Materiales, November 8–10, 2000, Instituto Technologico de Saltillo, Saltillo, Coahuila, Mexico.

  3. [3]

    E. Apen, B. R. Rogers and J. A. Sellers, J. Vac. Sci Technol. 16, 1227 (1998).

    CAS  Article  Google Scholar 

  4. [4]

    H. Y. H. Chan, C. G. Takoudis, M. J. Weaver, Electrochem. and Solid State Lett. 2, 189 (1999).

    CAS  Article  Google Scholar 

  5. [5]

    J. Li, J. W. Mayer, E. G. Colgan, J. Appl. Phys. 70, 2820 (1991).

    CAS  Article  Google Scholar 

  6. [6]

    M. Rauh and P. Wissmann, Thin Solid Films 228, 121 (1993).

    CAS  Article  Google Scholar 

  7. [7]

    K. Hono, H. Pickering, T. Hashizume, I. Kamiya, T. Sakurai, Sur. Sci. 213, 90 (1989).

    CAS  Article  Google Scholar 

  8. [8]

    R. Garcia-Cantu, J. J. Alvarado, O. Solorza, J. Microsc. 171, 167 (1993).

    CAS  Article  Google Scholar 

  9. [9]

    D. L. Cocke, G. K. Chuah, N. Kruse, J. H. Block, Appl. Sur. Sci. 84, 153–161 (1995).

  10. [10]

    J. M. Machefert, M. Lenglet, D. Blavette, A. Menard, A. D’Huysser, “Structure and Reactivity of Surfaces” (Elsevier Publishing, Amsterdam, 1989), p. 625.

  11. [11]

    T. Barr, J. Phys. Chem. 82, 1801 (1978).

    CAS  Article  Google Scholar 

  12. [12]

    C. Yoon and D. L. Cocke, Appl. Surf. Sci. 31, 118 (1988); J. Electrochem. Soc. 134, 643 (1987).

    CAS  Article  Google Scholar 

  13. [13]

    H. Streblow and B. Titze, Electrochim. Acta 25, 839 (1980).

    Article  Google Scholar 

  14. [14]

    G. N. Raikar, J. C. Gregory and P. N. Peters, Oxid. Metals 42, 1 (1994).

    CAS  Google Scholar 

  15. [15]

    M. Lenglet, K. Kartouni, J. Machefert, J. M. Claude, P. Steinmetz, E. Beauprez, J. Heinrich, N. Celati, Mat. Res. Bull. 30, 393 (1995).

    CAS  Article  Google Scholar 

  16. [16]

    B. Lefez, K. Kartouni, M. Lenglet, D. Ronnow, C. G. Ribbing, Surf. &amp; Interface Anal. 22, 451 (1994).

    CAS  Article  Google Scholar 

  17. [17]

    M. Lenglet, K. Kartouni, D. Delehaye, J. Appl. Electrochem. 21, 697 (1991).

    CAS  Article  Google Scholar 

  18. [18]

    H. Weider and A. W. Czanderna, J. Phys. Chem. 28, 816 1962.

  19. [19]

    E. G. Clarke and A. W. Czanderna, Surf. Sci. 49, 529 (1975).

    CAS  Article  Google Scholar 

  20. [20]

    M. G. Hapse, M. K. Gharpurey, A. B. Biswas, Sur. Sci. 9, 87 (1968).

    Article  Google Scholar 

  21. [21]

    H. Neumeister and W. Jaenicke, Z. Phys Chem. Neue Folge B108, 217 (1977).

    Article  Google Scholar 

  22. [22]

    A. W. Czanderna and H. Wieder in “Vacuum Microbalance Techniques”, edited by R. F. Walker (Plenum Press, Inc., New York, 1962), Vol. 2, pp. 147–164.

  23. [23]

    S. Suzuki, Y. Ishikawa, M. Isshiki, Y. Wsaeda, Materials Transactions JIM, 38, 1004 (1997).

    CAS  Article  Google Scholar 

  24. [24]

    H. Bubert and T. Appel, J. Microscoy Society of America 2, 35 (1996).

    CAS  Google Scholar 

  25. [25]

    M. O’Reilly, X. Jaing, J. T. Beechinor, S. Lynch, C. NíDheasuna, J. C. Patterson, G. M. Crean, Appl. Surf. Sci. 91, 152 (1995).

    Article  Google Scholar 

  26. [26]

    S. K. Roy, S. K. Bose, S. C. Sircar, Oxidation of Metals 35, 1 (1991).

    CAS  Article  Google Scholar 

  27. [27]

    S.-Y. Lee, S.-H. Choi, C.-O. Park, Thin Solid Films 359, 261 (2000).

    CAS  Article  Google Scholar 

  28. [28]

    J. C. Yang, B. Kolasa, J. M. Gibson, Appl. Phys. Let. 73, 2841 (1998).

    CAS  Article  Google Scholar 

  29. [29]

    M. Rauh, H.-U. Finzel, P. Wissmann, Z. Naturforsch. 54A, 117 (1999).

    Article  Google Scholar 

  30. [30]

    O. Forsén, P. Personen, J. Aromaa, T. Sourtti, Trans. IMF 75, 65 (1997).

    Article  Google Scholar 

  31. [31]

    Schennach R, MYA Mollah, JR Parga, DL Cocke, Linear sweep voltammetric and galvanostatic reduction for interfacial characterization of materials, in Proceedings of XXII Congresso Internaciaonal de Metalurgia y Materiales, November 8–10, 2000, Instituto Technologico de Saltillo, Saltillo, Coahuila, Mexico.

  32. [32]

    D. L. Cocke; J. H.Block, Surf. Sci., 70, 363 (1977).

    Article  Google Scholar 

  33. [33]

    C. Yoon, A surface segregation and oxidation study of alloys with unique electronic properties-implications in catalysis and corrosion, Ph.D. Dissertation, Texas A&amp;M University, 1986.

  34. [34]

    N. Bellakhal, K. Draou, J. L. Brisset , J. Appl. Electrochem., 27, 414 (1997).

    CAS  Article  Google Scholar 

  35. [35]

    D. E. Mencer, M. A. Hossain, J. R. Parga, D. L. Cocke, J. Mater. Sci. Lett. 21, 125 (2002); Erratum, submitted.

  36. [36]

    D. E. Mencer, M. A. Hossain, R. Schennach, M. Kesmez, J. R. Parga and D. G. Naugle, J. Appl. Electrochem., submitted.

Download references

Author information



Corresponding author

Correspondence to D. E. Mencer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mencer, D.E., Hossain, M.A., Kesmez, M. et al. Metal-Oxide Interfacial Evolution in Thermally Grown Oxide Films. MRS Online Proceedings Library 749, 154 (2002).

Download citation