Atomistic simulation study of misfit strain relaxation mechanisms in heteroepitaxial islands

Abstract

The mechanisms of the misfit strain relaxation in heteroepitaxial islands are investigated in two-dimensional molecular dynamics simulations. Stress distributions are analyzed for coherent and dislocated islands. Thermally-activated nucleation of misfit dislocations upon annealing at an elevated temperature and their motion from the edges of the islands towards the positions corresponding to the maximum strain relief is observed and related to the corresponding decrease of the total strain energy of the system. Differences between the predictions of the energy balance and force balance criteria for the appearance of misfit dislocations is discussed. Simulations of an island located at different distances form the edge of a mesa indicate that the energy of the system decreases sharply as the island position shifts toward the edge. These results suggest that there may be a region near the edge of a mesa where nucleation and growth of ordered arrays of islands is favored.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1998).

  2. [2]

    Germanium silicon: Physics and materials, edited by R. Hull and J. C. Bean (Academic Press, San Diego, 1999).

  3. [3]

    H. T. Johnson and L. B. Freund, J. Appl. Phys. 81, 6081 (1997).

    CAS  Article  Google Scholar 

  4. [4]

    X. Su, R.K. Kalia, A. Nakano, P. Vashishta, A. Madhukar, Appl. Phys. Lett. 79, 4577 (2001).

    CAS  Article  Google Scholar 

  5. [5]

    M.A. Makeev and A. Madhukar, Appl. Pys. Lett. 81, 3789 (2002).

    CAS  Article  Google Scholar 

  6. [6]

    P. Raiteri, F. Valentinotti, and L Miglio, Appl. Surf. Sci. 188, 4 (2002).

    CAS  Article  Google Scholar 

  7. [7]

    S. Guha, A. Madhukar and K.C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).

    CAS  Article  Google Scholar 

  8. [8]

    Y. Chen, X. W. Lin, Z. Liliental-Weber, and J. Washburn, Appl. Phys. Lett. 68, 111 (1996).

    CAS  Article  Google Scholar 

  9. [9]

    V. Gopal, A. L. Vasiliev, and E. P. Kvam, Phil. Mag. A 81, 2481 (2001).

    CAS  Article  Google Scholar 

  10. [10]

    W. Wunderlich, M. Fujimoto, H. Ohsato, Thin Solid Films 375, 9 (2000).

    CAS  Article  Google Scholar 

  11. [11]

    S.Y. Shiryaev, F. Jensen, J.L. Hansen, J. W. Petersen, A.N. Larsen, Phys. Rev. Lett. 78, 503 (1997).

    CAS  Article  Google Scholar 

  12. [12]

    J. Tersoff, C. Teichert, and M.G. Lagally, Phys. Rev. Lett. 76, 1675 (1996).

    CAS  Article  Google Scholar 

  13. [13]

    T.I. Kamins and R.S. Williams, Appl. Phys. Lett. 71, 1201 (1997).

    CAS  Article  Google Scholar 

  14. [14]

    G. Jin, J. Wan, Y.H. Luo, J.L. Liu, and K.L. Wang, J. Cryst. Growth 227–228, 1100 (2001).

    Article  Google Scholar 

  15. [15]

    Q. Gong, R. Notzel, H.P. Schonherr, K.H. Ploog, Physica E 13, 1176 (2002).

    CAS  Article  Google Scholar 

  16. [16]

    A. Kuronen, K. Kaski, L.F. Perondi and J. Rintala, Europhys. Lett. 55, 19 (2001).

    CAS  Article  Google Scholar 

  17. [17]

    L. Dong, J. Schnitker, R.W. Smith, and D.J. Srolovitz, J. Appl. Phys. 83, 217 (1998).

    CAS  Article  Google Scholar 

  18. [18]

    J. S. Rowlinson, Liquid and liquid mixtures (Butterworth Scientific, London, 1982).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Avinash M. Dongare.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dongare, A.M., Zhigilei, L.V. Atomistic simulation study of misfit strain relaxation mechanisms in heteroepitaxial islands. MRS Online Proceedings Library 749, 1012 (2002). https://doi.org/10.1557/PROC-749-W10.12

Download citation