The Roles of Energetic Displacement Cascades in Ion Beam Modifications of Materials


The roles of energetic displacement cascades are ubiquitous in the fields of radiation damage and ion beam modifications of materials. These roles can be described on two time scales. For the first, which lasts ≈ 10-11 s, small cascade volumes are characterized by large supersaturations of point defects, structural disorder, and energy densities in excess of some tenths of eV's per atom. During this period, the system can be driven far from equilibrium with significant rearrangement of target atoms and the production of Frenkel pairs. Experimental studies of ion beam mixing in conjunction with molecular dynamics computer simulations, have contributed largely toward understanding these dynamic cascade processes. At later times, the microstructure of the material evolves as cascades begin to overlap, or at elevated temperatures, point defects migrate away from their nascent cascades. It will be shown how the primary state of damage in cascades influences this microstructural development. Examples involving radiation-enhanced diffusion and ion-induced amorphization will be discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. R. Beeler, Jr. and M. F. Beeler, in Fundamental Aspects of Radiation Damage in Metals, USERDA CONF-751006-P1 (1976) p. 28.

  2. 2.

    See e.g., K. B. Winterbon, Ion Implantation and Energy Deposition Distributions, vol. 2 (Plenum Press, New York, 1975).

  3. 3.

    J. B. Gibson, A. N. Goland, M. Milgram and G. H. Vineyard, Phys. Rev. 120, 1229 (1960).

    CAS  Article  Google Scholar 

  4. 4.

    M. A. Kirk and T. H. Blewitt, Met. Trans., 9A, 1729 (1978).

    Article  Google Scholar 

  5. 5.

    C. Y. Wei, M. I. Current, and D. N. Seidman, Phil. Mag.A, 43, 1419 (1981).

    CAS  Article  Google Scholar 

  6. 6.

    G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955).

    Article  Google Scholar 

  7. 7.

    P. Sigmund, Radiat. Effects, 1, 15 (1969).

    Article  Google Scholar 

  8. 8.

    J. R. Beeler, Jr., Phys. Rev. 150, 470 (1966).

    CAS  Article  Google Scholar 

  9. 9.

    M. T. Robinson and I. M. Torrens, Phys. Rev.B, 9 (1974) 5008.

    Article  Google Scholar 

  10. 10.

    R. S. Averback, R. Benedek, and K. L. Merkle, Phys. Rev.B, 18, 4156 (1978).

    CAS  Article  Google Scholar 

  11. 11.

    P. Jung, J. Nucl. Mater., 117, 70 (1983).

    CAS  Article  Google Scholar 

  12. 12.

    C.-Y. Wei, M. I. Current, and D. N. Seidman, Phil. Mag. A, 44, 459 (1981).

    CAS  Article  Google Scholar 

  13. 13.

    M. W. Guinan and J. H. Kinney, J. Nucl. Mater. 108–109, 95 (1982).

    Article  Google Scholar 

  14. 14.

    M. W. Guinan and J. H. Kinney, J. Nucl. Mater. 103/104, 1319 (1981)

    Article  Google Scholar 

  15. 15.

    W. E. King and R. Benedek, J. Nucl. Mater. 117, 26 (1983).

    CAS  Article  Google Scholar 

  16. 16.

    T. Diaz de la Rubia, R. S. Averback, R. Benedek and W. King, unpublished.

  17. 17.

    W. L. Johnson, Nucl. Instr. and Meth. B, 7/8, 657 (1985).

    Article  Google Scholar 

  18. 18.

    R. S. Averback, Nucl. Instr. and Meth. B, 15, 675 (1986).

    Article  Google Scholar 

  19. 19.

    H. H. Anderson, Appl. Phys. 18 (1979) 131.

    Article  Google Scholar 

  20. 20.

    U. Littmark, Nucl. Instr. Meth. B7/8, 684 (1985).

    Article  Google Scholar 

  21. 21.

    R. S. Averback, D. Peak, and L. J. Thompson, Appl. Phys. A, 39, 59 (1986).

    Article  Google Scholar 

  22. 22.

    D. Peak and R. S. Averback, Nucl. Instr. Met. B7/8, 561 (1985).

    Article  Google Scholar 

  23. 23.

    S.-J. Kim, M-A. Nicolet, R. S. Averback, and D. Peak, Phys. Rev. B, in press.

  24. 24.

    T. Diaz de la Rubia, R. S. Averback, R. Benedek and W. E. King, (unpublished).

  25. 25.

    SUPERGLOB was written by J. R. Beeler, Jr., Univ. of N. Carolina.

  26. 26.

    Y.-T. Cheng, M. Van Rossum, M-A. Nicolet, and W. L. Johnson, Appl. Phys. Lett. 45), 185 (1984.

    CAS  Article  Google Scholar 

  27. 27.

    H. Westendorp, Z.-L. Wang and F. W. Saris, Nucl. Instr. and Meth. 194, 453 (1982) .

    CAS  Article  Google Scholar 

  28. 28.

    M. Kloska and O. Meyer, Phys. Rev. Lett. in press.

  29. 29.

    G. Lück and R. Sizmann, Phys. Stat. Solidi, 5, 683 (1964).

    Article  Google Scholar 

  30. 30.

    H. J. Wollenberger, in Vacancies and Interstitials in Metals, eds. A. Seeger et al. (North Holland, Amsterdam, 1970) p. 215.

  31. 31.

    C. A. English and M. L. Jenkins, in Vacancies and Interstitials in Metals and Alloys, ed. C. Abromeit, in press.

  32. 32.

    T. H. Blewitt, Bull. Am. Phys. Soc., 1957.

  33. 33.

    E. M. Schulson, J. Nucl. Mater. 83, 239 (1979).

    CAS  Article  Google Scholar 

  34. 34.

    D. E. Luzzi, H. Mori, H. Fujita, and M. Meshii, Beam-Solid Interactions and Phase Transformations, eds. H. Kurz et al., MRS Symposium Series, Vol. 51, 1986, p. 479.

  35. 35.

    M. Holz, P. Ziemann and W. Buckel, Phys. Rev. Lett. 51, 1584 (1983).

    CAS  Article  Google Scholar 

  36. 36.

    H. Mori, H. Fujita, and M. Fujita, Jap. J. Appl. Phys., 22 L94 (1983).

    Article  Google Scholar 

  37. 37.

    L. M. Howe and M. Rainville, J. Nucl. Mater., 68, 215 (1977).

    CAS  Article  Google Scholar 

  38. 38.

    H. Mori and H. Fujita, Jap. J. Appl. Phys., 21, L494 (1982).

    CAS  Article  Google Scholar 

  39. 39.

    J. L. Brimhall, H. E. Kissinger, and L. A. Chariot, Rad. Effs., 77, 273 (1983).

    CAS  Article  Google Scholar 

  40. 40.

    D. N. Seidman, R. S. Averback and P. R. Okamoto, Phys. Rev. Lett. (submitted).

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Averback, R.S., Kim, SJ. & de la Rubia, T.D. The Roles of Energetic Displacement Cascades in Ion Beam Modifications of Materials. MRS Online Proceedings Library 74, 399 (1986).

Download citation