Skip to main content
Log in

A Hydrodynamic Study of Laser-Induced Vaporization of Aluminum in Vacuum

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The three-dimensional hydrodynamics of laser-induced, steady state vaporization of aluminum (2024) in vacuim was investigated with the aid of both a hydrodynamic computer code and a Mach-Zender interferometer. Provided the laser beam is sufficiently intense, a vapor plasma forms, resulting in a sustained region of high pressure near the target. The pressure is distributed asymmetrically over the footprint in the case of oblique incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Reilly, AIAA Paper 84-1785 (1984).

  2. N. G. Rasov, et.al., Sov. Phys. (JETP), 27, 575 (1968).

    Google Scholar 

  3. P. E. Nielsen, J. Appl. Phys., 50, 3938 (1979).

    Article  CAS  Google Scholar 

  4. C. L. Bohn and M. L. Crawford, J. Appl. Phys. (accepted for publication).

  5. P. F. Nielsen, J. Appl. Phys., 46, 4501 (1975).

    Article  Google Scholar 

  6. S. I. Anisismov, Sov. Phys. (JETP), 27, 182 (1968).

    Google Scholar 

  7. L. L. Levenson, S. D. Traynor, G. A. Brost and F. Zienbo, SEM Journal, (accepted for publication).

  8. C. L. Bonn, et. al., Southwest Conf. on Optics, Proc. SPIE 5400, 290 (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brost, G.A., Bohn, C.L., Crawford, M.L. et al. A Hydrodynamic Study of Laser-Induced Vaporization of Aluminum in Vacuum. MRS Online Proceedings Library 74, 217 (1986). https://doi.org/10.1557/PROC-74-217

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-74-217

Navigation