Phase Selection During Pulsed Laser Annealing of Fe-V Alloys

Abstract

Pulsed laser melting of the low-temperature σ (tetragonal, D8b) phase has been used to generate a liquid undercooled with respect to the melting point of the higher-temperature, equilibrium α (bcc) solid solution in equiatomic Fe-V alloys. From calculations based on reported thermodynamic data and equilibrium transformation temperatures, the metastable melting point of the σ phase is about 1720 K for an Fe-50 at.% V alloy, which is 54 K below the melting temperature of the α phase. During rapid heating of well-annealed σ-phase material with a 30 ns laser pulse to above melt threshold, the σ → α reaction is suppressed, so that the melt zone is undercooled by ∼ 54 K with respect to the equilibrium α phase. The α phase nucleates from the undercooled molten surface layer and is retained during the subsequent rapid cooling (∼ 1010 K/s) because of the relatively sluggish α → σ transformation. X-ray diffraction (Read camera) and TEM identified the α phase in the near-surface after melting σ with incident laser energies (1.0–1.41 J/cm2) which are well above the melt threshold as determined by changes in reflectivity (∼ 0.7 J/cm2). The α phase nucleated from the undercooled liquid within ∼ 20 ns.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. M. Follsteadt, P. S. Peercy and J. H. Perepezko, Appl. Phys. Lett. 48, 338 (1986).

    Article  Google Scholar 

  2. 2.

    J. H. Perepezko, D. M. Follstaedt and P. S. Peercy, Mat. Res. Soc. Symp. Proc. 51, 297 (1986).

    CAS  Article  Google Scholar 

  3. 3.

    J. H. Perepezko and W. J. Boettinger, Mat. Res. Soc. Symp. Proc. 19, 223 (1983).

    Article  Google Scholar 

  4. 4.

    O. Kubaschewski, Iron-Binary Phase Diagrams, (Springer-Verlag, New York, 1982).

    Google Scholar 

  5. 5.

    M. V. Nevitt, in Electronic Structure and Alloy Chemistry of the Transition Elements, P. A. Beck, ed. (Interscience, New York, 1963) pp. 105–123.

    Google Scholar 

  6. 6.

    E. O. Hall and S. G. Algie, Int. Met. Rev. 11, 61 (1966).

    Article  Google Scholar 

  7. 7.

    W. J. Kitchingman and G. M. Bedford, Metal Sci. Jnl. 5, 121 (1971).

    CAS  Article  Google Scholar 

  8. 8.

    J. I. Seki, M. Hagiwara and T. Suzuki, Jnl. Mat. Sci. 14, 2404 (1979).

    CAS  Article  Google Scholar 

  9. 9.

    K. Hack, H. D. Nussler, P. J. Spencer and G. Inden, CALPHAD VIII, Stockholm, May 1979, p. 224.

  10. 10.

    O. Kubaschewski, H. Probst and K. H. Geiger, Z. Phys. Chem. 104, 23 (1979).

    Article  Google Scholar 

  11. 11.

    J. F. Smith, Bull. Alloy Phase Diagrams, 5, 184 (1984).

    CAS  Article  Google Scholar 

  12. 12.

    J. C. Baker and J. W. Cahn, in Solidification (ASM, Metals Park, Ohio 1971) pp. 23–58.

    Google Scholar 

  13. 13.

    A. G. Cullis, N. C. Webber and P. Bailey, J. Phys. E12 688 (1979).

    CAS  Google Scholar 

  14. 14.

    K. Bungardt and W. Spyra, Arch. Eisenhuttenwes. 30, 95 (1959).

    CAS  Google Scholar 

  15. 15.

    J. Fehling and E. Scheil, Z. Metallkde. 53 593 (T962).

  16. 16.

    P. S. Peercy, D. M. Follstaedt and J. H. Perepezko, to be published.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perepezko, J.H., Follstaedt, D.M. & Peercy, P.S. Phase Selection During Pulsed Laser Annealing of Fe-V Alloys. MRS Online Proceedings Library 74, 161 (1986). https://doi.org/10.1557/PROC-74-161

Download citation