Observation of Quantum Confinement Effects in Nanocrystalline Silicon Dot Floating Gate Single Electron Memory Devices

Abstract

Electron charging and discharging processes in floating gate MOS memory based on nanocrystalline silicon (nc-Si) dots were investigated at room temperature using capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Sequential electron discharging processes from nc-Si dots manifest themselves clearly in G-V spectroscopy after charging of the dots. According to the conductance peak structure resulting from the Coulomb blockade as well as quantum confinement effects of nc-Si dots, electron-addition energy is estimated to be 50 meV. Taking the electron-charging energy between the silicon substrate and the floating dot (30 meV) into account, the quantum confinement energy is found to be comparable to the electron charging energy for an nc-Si dot of 8 nm in diameter embedded in the silicon oxide.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    K. Yano, T Ishii, T. Sano, T. Mine, F. Murai, T. Hashimoto, T. Kobayashi, T. Kure, and K. Seki, Proc. IEEE, 87, 633 (1999).

    Article  Google Scholar 

  2. [2]

    A. Dutta, S. Oda, Y. Fu, and M. Willander, Jpn. J. Appl. Phys., 39, 4647 (2000).

    CAS  Article  Google Scholar 

  3. [3]

    G. Medeiros-Ribeiro, F. G Pikus, P. M. Petroff, and A. L. Efros, Phys. Rev. B. 55, 1568 (1997).

    CAS  Article  Google Scholar 

  4. [4]

    D. V. Averin and A. N. Korotkov, J. Low Temp. Phys. 80, 173 (1990).

    CAS  Article  Google Scholar 

  5. [5]

    S. Huang, S. Banerjee, and S. Oda, Mater. Res. Soc. Symp. Proc. 686, 209 (2001).

    Article  Google Scholar 

  6. [6]

    E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York, 1982), Chap. 5.

    Google Scholar 

  7. [7]

    S. Huang, S. Banerjee, and S. Oda, Mater. Res. Soc. Symp. Proc. 715, A12.5 (2002).

    Article  Google Scholar 

  8. [8]

    K. Likharev, Proc. IEEE, 87, 606 (1999).

    CAS  Article  Google Scholar 

  9. [9]

    C. W. J. Beenakker, Phys. Rev. B, 44, 1646 (1991)

    CAS  Article  Google Scholar 

  10. [10]

    B. J. Hinds, T. Yamanaka, and S. Oda, J. Appl. Phys. 90, 6402 (2001).

    CAS  Article  Google Scholar 

  11. [11]

    M. Saitoh and T. Hiramoto, J. Appl. Phys., 91, 6725 (2002).

    CAS  Article  Google Scholar 

  12. [12]

    S. M. Sze, Physics of Semiconductor Devices, 2nd Edition (Wiley, New York, 1981) Chap. 1 and Appendix G

    Google Scholar 

  13. [13]

    J. Sée, P. Dollfus, and S. Galdin, J. Appl. Phys., 92, 3141 (2002).

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. K. Arai and Mr. J. Oomachi for their help with nc-Si dots deposition processes and Mr. R. Nakamura for his help with SiO2 deposition process. Funding was supported by a grant-in aid for Scientific Research from the Ministry of Education and by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Corporation (JST).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shaoyun Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Banerjee, S. & Oda, S. Observation of Quantum Confinement Effects in Nanocrystalline Silicon Dot Floating Gate Single Electron Memory Devices. MRS Online Proceedings Library 737, 113 (2002). https://doi.org/10.1557/PROC-737-F11.3

Download citation