Shape Engineered InAs Quantum Dots with Stabilized Electronic Properties


We have studied the influence of overgrowth procedure and a few monolayer-thick AlAs overlayer on the properties of self-assembled InAs quantum dots (QDs) using scanning electron microscopy (SEM) and photoluminescence (PL). PL spectroscopy was used to optimize optical properties of the QDs by shape engineering (QD truncation) through adjustment of the thickness of overlayers and temperature of the subsequent heating. QDs with 6 nm - thick overlayer with subsequent heating up to 560°C was found to have the highest PL intensity at room temperature and the lowest FWHM, 29 meV. Ground state energy of the truncated QDs is very stable against variations of growth parameters. 1.23 μm edge-emitting laser of triple-layer QD structure demonstrated room temperature threshold current density, 74 A/cm2.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. Park, D. L. Huffaker, Z. Zou, {etet al.}, IEEE Photon.Technol.Lett., 11, 301 (1999).

    Article  Google Scholar 

  2. 2.

    P. G. Eliseev, H. Li, A. Stintz, T. C. Newell, {etet al.}, Appl. Phys. Lett., 77, 262 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    X. Huang, A. Stintz, C.P. Hains, {etet al.}, IEEE Photon. Technol. Lett., 12, 227 (2000).

    Article  Google Scholar 

  4. 4.

    D. Leonard, M. Kishnamurthy, C. M. Reaves, {etet al.}, Appl. Phys. Lett., 63, 3203 (1993).

    CAS  Article  Google Scholar 

  5. 5.

    N. N. Ledentsov, V. M. Ustinov, A. Yu. Egorov, {etet al.}, Semicond., 28, 832 (1994).

    Google Scholar 

  6. 6.

    Q. Xie, P. Chen, and A. Madhukar, Appl. Phys. Lett. 65, 2051 (1994).

    CAS  Article  Google Scholar 

  7. 7.

    G. D. Lian, J. Yuan, L.M. Brown, G.H. Kim, D.A.Ritchie, Appl. Phys. Lett., 73, 49 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    M. Arzberger, U. Käsberger, G. Böhm, {etet al.}, Appl. Phys. Lett., 75, 3968 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    A. F. Tsatsul’nikov, A. R. Kovsh, A. E. Zhukov, {etet al.}, J. Appl. Phys., 88, 6272 (2000).

    Article  Google Scholar 

  10. 10.

    Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, {etet al.}, Appl. Phys. Lett., 81, 1621 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, J. Crystal Growth., 201, 1131 (1999).

    Article  Google Scholar 

  12. 12.

    D. S. Sizov, M. V. Maksimov, A. F. Tsatsul’nikov, {etet al.}, Semicond., 36, 1020 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    J. Kim, L.W. Wang, and A. Zunger, Phys. Rev. B., 57, R9408 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    Graig Pryor, Phys. Rev. B., 60, 2869 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    O. B. Shchekin, G. Park, D. L. Huffaker, D. G. Deppe, Appl. Phys. Lett., 77, 466 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    L. V. Asryan, M. Grundmann, O. Stier, R. A. Suris, {etet al.}, J. Appl. Phys., 90, 1666 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    V. Tokranov, M. Yakimov, A. Katsnelson, {etet al.}, Proceedings of SPIE, 4656, 79 (2002).

    CAS  Article  Google Scholar 

Download references


The work is supported by MARCO and DARPA through the National Focus Center for Interconnects for Gigascale Integration. This support is greatly appreciated.

Author information



Corresponding author

Correspondence to V. Tokranov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tokranov, V., Yakimov, M., Katsnelson, A. et al. Shape Engineered InAs Quantum Dots with Stabilized Electronic Properties. MRS Online Proceedings Library 737, 1344 (2002).

Download citation