Controlled Design of Mesostructured Titania Based Materials


Mesostructured TiO2-surfactant hybrid xerogels and thin films are prepared by Evaporation-Induced Self Assembly (EISA). These organized structures are reproducibly formed through cooperative self-assembly between hydrophilic Ti-oxo species and a micellar template after selective solvent evaporation from ethanol/HCl/H2O media. The construction of these networks is tailored by tuning the hydrolysis-condensation of the metallic cations with the self-assembly of the organic counterparts (“hydrophilic matching” approach). The hybrids present hexagonal mesostructure ( p6m). The formation kinetics of the mesophase is followed by SAXS, interferometry and mass spectrometry (MS) analysis of the vapor phase. An adequate thermal treatment of the organized hybrids leads to high surface (150-400m2 g-1) phosphorus-free mesoporous titania films or powders, with walls containing anatase nanocrystallites. This approach can be successfully extended to other non-silicate based meso-structured materials.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Mann et al., Chem. Mater., 9, 2300, (1997).

    CAS  Article  Google Scholar 

  2. 1a.

    G.A. Ozin, Chem. Commun, 419, (2000).

    Google Scholar 

  3. 2.

    Recent reviews: a) T.J. Barton et al, Chem. Mater., 11, 2633, (1999).

    CAS  Article  Google Scholar 

  4. 2b)

    J.Y. Ying, C. Mehnert and M.S. Wong, Angew. Chem., Int. Ed., 38, 57, (1999).

    Article  Google Scholar 

  5. 3.

    F. Schüth, Chem. Mater. 13, 3184, (2001).

    Article  Google Scholar 

  6. 4.

    C.J. Brinker Y. Lu A. Sellinger H. Fan Adv. Mater., 11, 579, (1999).

    CAS  Article  Google Scholar 

  7. 5.

    G.J.A.A. Soler-Illia, A. Louis and C. Sanchez Chem. Mater. 14, 750, (2002).

    Article  Google Scholar 

  8. 6.

    D. Grosso G. J. A. A. Soler-Illia, F. Babonneau C. Sanchez P.-A. Albouy, A. Brunet-Bruneau and A. R. Balkenende Adv. Mater., 13, 1085, (2001).

    CAS  Article  Google Scholar 

  9. 7.

    G.J.A.A. Soler-Illia and C. Sanchez New J. Chem., 24, 493, (2000).

    CAS  Article  Google Scholar 

  10. 8.

    G.J.A.A. Soler-Illia, E. Scolan A. Louis P.A. Albouy C. Sanchez New J. Chem., 25, 156, (2001).

    CAS  Article  Google Scholar 

  11. 9.

    D. Grosso et al., Chem. Mater., 14, 931, (2002).

    CAS  Article  Google Scholar 

  12. 10.

    P. Yang et al. Nature, 395, 583, (1998).

    Article  Google Scholar 

  13. 10a.

    P. Yang et al. Chem. Mater. 11, 2813, (1999).

    CAS  Article  Google Scholar 

  14. 11.

    N. Yao et al., Chem. Mater. 12, 1536, (2001).

    Article  Google Scholar 

  15. 12.

    E. L. Crepaldi G. J. A. A. Soler-Illia, D. Grosso P.-A. Albouy, H. Amenitsch and C. Sanchez, Studies Surf. Catal. (2002)in press.

    Google Scholar 

  16. 13.

    D. Grosso et al. Chem. Mater., 13, 1848, (2001).

    CAS  Article  Google Scholar 

  17. 14.

    E. L. Crepaldi G. J. A. A. Soler-Illia, D. Grosso, P.-A. Albouy and C. Sanchez Chem. Commun. 1528, (2001).

  18. 15.

    L. Pidol D. Grosso G.J.A.A. Soler-Illia, E. Crepaldi C. Sanchez P.-A. Albouy and H. Amenitsch, J. Mater. Chem., 12, 557, (2002).

    CAS  Article  Google Scholar 

  19. 16.

    N.A. Melosh et al., Macromolecules, 32, 4332, (1999).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. J. A. A. de Soler-Illia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Soler-Illia, G.J.A.A., Grosso, D., Crepaldi, E.L. et al. Controlled Design of Mesostructured Titania Based Materials. MRS Online Proceedings Library 726, 73 (2002).

Download citation