Pyrene Fluorescence as a Molecular Probe of Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications


Fluorescence spectroscopy has been used to study the miscibility of methyl silsesquioxane (MSSQ)/poly(methyl methacrylate-co-dimethylaminoethyl methacrylate) [P(MMA-co-DMAEMA)] hybrid nanocomposites, which are useful in fabricating the next generation of spin-on, ultra-low dielectric constant materials in the microelectronic industries. In this work, we have attached the pyrene group into the PMMA side chains. MSSQ with different amount of initial -SiOH (silanol) endgroups are used to study the effect of endgroup functionality on the phase separation behavior of the hybrid nanocomposites. Pyrene excimer fluorescence results reveal that MSSQ is miscible with P(MMA-co-DMAEMA) only up to 6 wt% P(MMA-co-DMAEMA) loading level, thus establishing an upper limit on local miscibility with MSSQ. As the P(MMA-co-DMAEMA) loading level increases, the excimer to monomer ratios also increase, suggesting that the MSSQ/P(MMA-co-DMAEMA) hybrid nanocomposites move toward greater immiscibility. This ratio approaches that of the neat polymer for domain sizes > 5 nm (SAXS, SANS). The fluorescence results also show that, the lower the amount of initial silanol groups in MSSQ, the greater the immiscibility of the MSSQ and porogen, which ultimately translates into larger pores upon porogen burnout.

This is a preview of subscription content, access via your institution.


  1. 1.(a)

    R. D. Miller, Science, 286, 421 (1999)

    CAS  Article  Google Scholar 

  2. 1.(b)

    G. Maier, Prog. Polym. Sci. 26, 3 (2001)

    CAS  Article  Google Scholar 

  3. 1.(c)

    C. N. Nguyen, K. R. Carter, C. J. Hawker, J. L. Hedrick, R. L. Jaffe, R. D. Miller, J. F. Remenar, H. -W. Rhee, P. M. Rice, M. F. Toney, M. Trollsås, and D. Y. Yoon, Chem. Mater. 11, 3080 (1999).

    CAS  Article  Google Scholar 

  4. 2.(a)

    C. Rottman, G. Grader, Y. DeHazan, S. Melchior, and D. Avnir, J. Am. Chem. Soc., 121, 8533 (1999)

    CAS  Article  Google Scholar 

  5. 2.(b)

    Dantas de Morais, T.; Chaput, F.; Bailot, J. -P.; Lahlil, K.; Darracq, B.; and Levy, Y. Adv. Mater. 11, 107 (1999).

    Article  Google Scholar 

  6. 3.(a)

    O. Lev, M. Tsionsky, L. Rabinovich, V. Glezer, S. Sampath, I. Pankratov, J. Gun, Anal. Chem. 67, 22A (1995)

    CAS  Article  Google Scholar 

  7. 3.(b)

    M. A. Harmer, W. E. Farneth, and Q. Sun, J. Am. Chem. Soc., 118, 7708 (1996)

    CAS  Article  Google Scholar 

  8. 3.(c)

    U. Schubert, New J. Chem. 18, 1049 (1994).

    CAS  Google Scholar 

  9. 4.(a)

    C. Guizard, and P. Lacan, New J. Chem. 18, 1097 (1994)

    CAS  Google Scholar 

  10. 4.(b)

    M. Smaihi, T. Jermoumi, J. Marignan, and R. D. Noble, J. Membr. Sci.; 116, 211 (1996).

    CAS  Article  Google Scholar 

  11. 5.(a)

    L. L. Beecroft, C. K. Ober, Chem. Mater. 9, 1302 (1997)

    CAS  Article  Google Scholar 

  12. 5.(b)

    L. C. Klein, Sol-gel Optics, Processing and Applications; Kluwer: Boston, 1994.

    Google Scholar 

  13. 6.

    The National Technology Roadmap for Semiconductors, Semiconductor Industry Association: San Jose, CA, 1997.

  14. 7.(a)

    S. N. Semerak, C. W. Frank, Adv. Polym. Sci. 54, 31 (1983)

    Article  Google Scholar 

  15. 7.(b)

    D. C. Dong, M. A. Winnik, Can. J. Chem. 62, 2560 (1985)

    Article  Google Scholar 

  16. 7.(c)

    F. M. Winnik, Chem. Rev., 93, 587 (1993).

    CAS  Article  Google Scholar 

  17. 8.

    J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience: New York, 1970.

    Google Scholar 

  18. 9.(a)

    C. W. Frank, M. A. Gashgari, S. N. Semerak, NATO ASI Ser., Ser. C.; 182, 523 (1986)

    CAS  Google Scholar 

  19. 9.(b)

    M. A. Gashgari, C. W. Frank, Macromolecules, 21, 2782 (1988)

    CAS  Article  Google Scholar 

  20. 9.(c)

    C. W. Frank, W. C. Zin, ACS Symp. Ser. 358 (Photophysics of Polymers), 18 (1987)

    CAS  Article  Google Scholar 

  21. 9.(d)

    S. N. Semerak, C. W. Frank, Adv. Chem. Ser., 203 (Polym. Charact.), 751 (1983).

    Google Scholar 

  22. 10.(a)

    K. Kalyanasundaram; J. K. Thomas, J. Am. Chem. Soc., 99, 2039 (1977)

    CAS  Article  Google Scholar 

  23. 10.(b)

    A. Nakajima. Bull. Chem. Soc. Jpn., 44, 3272 (1971).

    CAS  Article  Google Scholar 

  24. 11.

    L. A. Utracki, Polymer Alloys and Blends, Munich: Hanser, 1989.

    Google Scholar 

  25. 12.

    Q. R. Huang; W. Volksen; E. Huang; M. Toney; C. W. Frank; and R. D. Miller Chem. Mater. (submitted).

  26. 13.(a)

    T. Keeling-Tucker, J. D. Brennan, Chem. Mater. 13, 3331 (2001)

    CAS  Article  Google Scholar 

  27. 13.(b)

    A. Katz, M. E. Davis, Nature, 403, 286 (2000)

    CAS  Article  Google Scholar 

  28. 13.(c)

    K. Matsui, T. Nakazawa, H. Morisaka, J. Phys. Chem.; 95, 976 (1991)

    CAS  Article  Google Scholar 

  29. 13.(d)

    V. R. Kaufman, D. Avnir, Langmuir, 2, 717 (1986)

    CAS  Article  Google Scholar 

  30. 13.(e)

    K. Matsui, T. Nakazawa, Bull. Chem. Soc. Jpn., 63, 11 (1990).

    CAS  Article  Google Scholar 

  31. 14.

    M. P. Petkov, M. H. Weber, K. G. Lynn, K. P. Rodbell, W. Volksen, and R. D. Miller, Proc. Mater. Res. Soc. (Advanced Metallization Conference), San Diego CA, 2000 (in press).

    Google Scholar 

  32. 15.

    G. Y. Yang, R. M. Briber, E. Huang, P. M. Rice, W. Volksen, R. D. Miller, Polym. Mater. Sci. Eng. 85, 18 (2001).

    CAS  Google Scholar 

  33. 16.

    E. Huang, R. D. Miller, et al. (unpublished).

Download references

Author information



Corresponding author

Correspondence to Q. R. Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, Q.R., Mecerreyes, D., Hedrick, J.L. et al. Pyrene Fluorescence as a Molecular Probe of Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications. MRS Online Proceedings Library 726, 653 (2002).

Download citation