A Statistical Approach to the Effect of Sol-Gel Process Variables on the Physical Properties of Polymer [PLLA]-Silica Hybrid Materials for Use as Biomaterials


Hybrid poly(L-lactic acid)-silica materials for potential use in orthopaedic applications have been prepared by a sol-gel method using an experimental design approach to investigate the effect of synthesis variables separately and together on the physical form of the organic polymer. The five factors investigated were the molar ratios of tetraethyl orthosilicate (TEOS)/Poly(Llactic acid) (PLLA), Toluene/PLLA, EtOH/TEOS, Water/TEOS and HCl (catalyst)/TEOS. All other synthesis conditions were kept constant. X-Ray powder diffraction (Statton’s graphical method) and differential scanning calorimetry were used to assess the extent of polymer crystallinity in the hybrid materials. In accordance with other studies, increasing the molar ratio of TEOS/PLLA lead to increasing incorporation of the organic polymer into the silica network. Increase of the toluene/PLLA molar ratio lead to an increase in the crystallinity of the polymer phase. As our studies investigated the effect of synthesis variables simultaneously it was possible to identify, for the first time, that interactions between specific reactants are important in the development of the two structural components of this hybrid system. The most important of these was the TEOS/PLLA*H2O/TEOS interaction that may indicate that silica species from hydrolysed TEOS interact with the PLLA phase possibly via hydrogen bonding and leads to the lowering of the crystalline order of the polymer The results from this study give useful information on the ability of the organic polymer and the silica phase to form interpenetrating networks, an important requirement for the generation of a potential hybrid polyester-silica biomaterial for orthopaedic applications.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. J. Domb J. Kost D. M. Wiseman “ Handbook of Biodegradable Polymers”, (Harwood Academic,1997).

    Google Scholar 

  2. 2.

    K. P. Andriano T. Pohjonen P. Tormala Journal of Applied Biomaterials 5, 133–140 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    G. Schwach M. Vert International Journal of Biological Macromolecules 25, 283–291 (1999).

    CAS  Article  Google Scholar 

  4. 4.

    T. V. Chirila P. E. Rakoczy K. L. Garrett X. Lou I. J. Constable Biomaterials 23, 321–342 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    M. Vert G. Schwach R. Engel J. Coudane Journal of Controlled Release 53, 85–92 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    J. W. Leenslag A. J. Pennings R. R. M. Bos, F. R. Rozema G. Boering Biomaterials 8, 70–73 (1987).

    CAS  Article  Google Scholar 

  7. 7.

    S. Ramakrishna J. Mayer E. Wintermantel K. W. Leong Composites Science and Technology 61, 1189–1224 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    J. C. Middleton A. J. Tipton Biomaterials 21, 2335–2346 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    R. Dell’Erba, G. Groeninckx G. Maglio M. Malinconico A. Migliozzi Polymer 42, 7831–7840 (2001).

    Article  Google Scholar 

  10. 10.

    D. K. Gilding A. M. Reed Polymer 20, 1459–1464 (1979).

    CAS  Article  Google Scholar 

  11. 11.

    M. Moukwa JOM 49, 46–50 (1997).

    CAS  Article  Google Scholar 

  12. 12.

    N. Ignjatovic S. Tomic M. Dakic M. Miljkovic M. Plavsic D. Uskokovic Biomaterials 20, 809–816 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    T. Kasuga S. Ozaki T. Hayakawa M. Nogami Y. Abe Journal of Materials Science Letters 18, 2021–2023 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    H. Schliephake T. Kage Journal of Biomedical Materials Research 56, 128–136 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    D. Tian Ph. Dubois, R. Jerome Journal of Polymer Science Part A: Polymer Chemistry 35, 2295–2309 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    D. Tian P. Dubois C. Grandfils R. Jerome P. Viville R. Lazzaroni J. L. Bredas P. Leprince, Chemistry of Materials 9(4), 871–874 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    M. M. Pereira L. L. Hench Journal of Sol-Gel Science and Technology 7, 59–68 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    S. Jiang X. Ji L. An B. Jiang Polymer 42, 3901–3907 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    D. Tian S. Blacher Ph. Dubois, R. Jerome Polymer 39, 855 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    D. Tian S. Blacher R. Jerome Polymer 40, 951–957 (1999).

    CAS  Article  Google Scholar 

  21. 21.

    H. H. Huang G. L. Wilkes Polymer Bulletin 18, 455–462 (1987).

    CAS  Article  Google Scholar 

  22. 22.

    D. Eglin C. C. Perry S. A. M. Ali, Submitted to Polymer

  23. 23.

    M. Ahola J. Rich P. Kortesuo J. Kiesvaara J. Seppala A. Yli-Urpo, International Journal of Pharmaceutics 181, 181–191 (1999).

    CAS  Article  Google Scholar 

  24. 24.

    D. R. Cox N. Reid “ The Theory of the Design of Experiments”, (Chapman & Hall,2000).

    Google Scholar 

  25. 25.

    G. Oye J. Sjoblom and M. Stocker Microporous and Mesoporous Materials 34, 291–299 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    N. Rueda R. Bacaud P. Lanteri and M. Vrinat Applied Catalysis A: General 215, 81–89 (2001).

    CAS  Article  Google Scholar 

  27. 27.

    R. Christensen “ Analysis of variance design & regression. Applied statistical method.”, (Chapman and Hall, 1996).

    Google Scholar 

  28. 28.

    S. Aubonnet Thesis Nottingham Trent University (1999).

  29. 29.

    H. P. Klug L. E. Alexander in “ X-ray Diffraction Procedures for polycrystalline and amorphous materials”, (John Wiley and Sons, 1952).

    Google Scholar 

  30. 30.

    W. O. Statton Journal of Polymer Science: Part C 18, 33–50 (1967).

    Google Scholar 

  31. 31.

    W. O. Statton Journal of Applied Polymer Science 7, 803–815 (1963).

    CAS  Article  Google Scholar 

  32. 32.

    T. Hatakeyama F. X. Quinn “ Thermal Analysis: Fundamentals and Applications to Polymer Science”, 2nd ed. (John Wiley & Sons, 1999).

    Google Scholar 

  33. 33.

    D. Brizzolara H. J. Cantow K. Diederichs E. Keller A. J. Domb Macromolecules 29, 191–19 (1996).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Carole C. Perry.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perry, C.C., Eglin, D., Ali, S.A.M. et al. A Statistical Approach to the Effect of Sol-Gel Process Variables on the Physical Properties of Polymer [PLLA]-Silica Hybrid Materials for Use as Biomaterials. MRS Online Proceedings Library 726, 51 (2002). https://doi.org/10.1557/PROC-726-Q5.1

Download citation