Abstract
Hybrid poly(L-lactic acid)-silica materials for potential use in orthopaedic applications have been prepared by a sol-gel method using an experimental design approach to investigate the effect of synthesis variables separately and together on the physical form of the organic polymer. The five factors investigated were the molar ratios of tetraethyl orthosilicate (TEOS)/Poly(Llactic acid) (PLLA), Toluene/PLLA, EtOH/TEOS, Water/TEOS and HCl (catalyst)/TEOS. All other synthesis conditions were kept constant. X-Ray powder diffraction (Statton’s graphical method) and differential scanning calorimetry were used to assess the extent of polymer crystallinity in the hybrid materials. In accordance with other studies, increasing the molar ratio of TEOS/PLLA lead to increasing incorporation of the organic polymer into the silica network. Increase of the toluene/PLLA molar ratio lead to an increase in the crystallinity of the polymer phase. As our studies investigated the effect of synthesis variables simultaneously it was possible to identify, for the first time, that interactions between specific reactants are important in the development of the two structural components of this hybrid system. The most important of these was the TEOS/PLLA*H2O/TEOS interaction that may indicate that silica species from hydrolysed TEOS interact with the PLLA phase possibly via hydrogen bonding and leads to the lowering of the crystalline order of the polymer The results from this study give useful information on the ability of the organic polymer and the silica phase to form interpenetrating networks, an important requirement for the generation of a potential hybrid polyester-silica biomaterial for orthopaedic applications.
This is a preview of subscription content, access via your institution.
References
- 1.
A. J. Domb J. Kost D. M. Wiseman “ Handbook of Biodegradable Polymers”, (Harwood Academic,1997).
- 2.
K. P. Andriano T. Pohjonen P. Tormala Journal of Applied Biomaterials 5, 133–140 (1994).
- 3.
G. Schwach M. Vert International Journal of Biological Macromolecules 25, 283–291 (1999).
- 4.
T. V. Chirila P. E. Rakoczy K. L. Garrett X. Lou I. J. Constable Biomaterials 23, 321–342 (2002).
- 5.
M. Vert G. Schwach R. Engel J. Coudane Journal of Controlled Release 53, 85–92 (1998).
- 6.
J. W. Leenslag A. J. Pennings R. R. M. Bos, F. R. Rozema G. Boering Biomaterials 8, 70–73 (1987).
- 7.
S. Ramakrishna J. Mayer E. Wintermantel K. W. Leong Composites Science and Technology 61, 1189–1224 (2001).
- 8.
J. C. Middleton A. J. Tipton Biomaterials 21, 2335–2346 (2000).
- 9.
R. Dell’Erba, G. Groeninckx G. Maglio M. Malinconico A. Migliozzi Polymer 42, 7831–7840 (2001).
- 10.
D. K. Gilding A. M. Reed Polymer 20, 1459–1464 (1979).
- 11.
M. Moukwa JOM 49, 46–50 (1997).
- 12.
N. Ignjatovic S. Tomic M. Dakic M. Miljkovic M. Plavsic D. Uskokovic Biomaterials 20, 809–816 (1999).
- 13.
T. Kasuga S. Ozaki T. Hayakawa M. Nogami Y. Abe Journal of Materials Science Letters 18, 2021–2023 (1999).
- 14.
H. Schliephake T. Kage Journal of Biomedical Materials Research 56, 128–136 (2001).
- 15.
D. Tian Ph. Dubois, R. Jerome Journal of Polymer Science Part A: Polymer Chemistry 35, 2295–2309 (1997).
- 16.
D. Tian P. Dubois C. Grandfils R. Jerome P. Viville R. Lazzaroni J. L. Bredas P. Leprince, Chemistry of Materials 9(4), 871–874 (1997).
- 17.
M. M. Pereira L. L. Hench Journal of Sol-Gel Science and Technology 7, 59–68 (1996).
- 18.
S. Jiang X. Ji L. An B. Jiang Polymer 42, 3901–3907 (2001).
- 19.
D. Tian S. Blacher Ph. Dubois, R. Jerome Polymer 39, 855 (1998).
- 20.
D. Tian S. Blacher R. Jerome Polymer 40, 951–957 (1999).
- 21.
H. H. Huang G. L. Wilkes Polymer Bulletin 18, 455–462 (1987).
- 22.
D. Eglin C. C. Perry S. A. M. Ali, Submitted to Polymer
- 23.
M. Ahola J. Rich P. Kortesuo J. Kiesvaara J. Seppala A. Yli-Urpo, International Journal of Pharmaceutics 181, 181–191 (1999).
- 24.
D. R. Cox N. Reid “ The Theory of the Design of Experiments”, (Chapman & Hall,2000).
- 25.
G. Oye J. Sjoblom and M. Stocker Microporous and Mesoporous Materials 34, 291–299 (2000).
- 26.
N. Rueda R. Bacaud P. Lanteri and M. Vrinat Applied Catalysis A: General 215, 81–89 (2001).
- 27.
R. Christensen “ Analysis of variance design & regression. Applied statistical method.”, (Chapman and Hall, 1996).
- 28.
S. Aubonnet Thesis Nottingham Trent University (1999).
- 29.
H. P. Klug L. E. Alexander in “ X-ray Diffraction Procedures for polycrystalline and amorphous materials”, (John Wiley and Sons, 1952).
- 30.
W. O. Statton Journal of Polymer Science: Part C 18, 33–50 (1967).
- 31.
W. O. Statton Journal of Applied Polymer Science 7, 803–815 (1963).
- 32.
T. Hatakeyama F. X. Quinn “ Thermal Analysis: Fundamentals and Applications to Polymer Science”, 2nd ed. (John Wiley & Sons, 1999).
- 33.
D. Brizzolara H. J. Cantow K. Diederichs E. Keller A. J. Domb Macromolecules 29, 191–19 (1996).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Perry, C.C., Eglin, D., Ali, S.A.M. et al. A Statistical Approach to the Effect of Sol-Gel Process Variables on the Physical Properties of Polymer [PLLA]-Silica Hybrid Materials for Use as Biomaterials. MRS Online Proceedings Library 726, 51 (2002). https://doi.org/10.1557/PROC-726-Q5.1
Published: