Optical Response of Dendrimer-Encapsulated CdS Quantum Dots—Regulation of Inter-Particle Electronic Coupling

Abstract

Optical properties of metal and semiconductor nanoparticles are sensitively dependent upon electronic coupling between the individual particles. In another work, we have demonstrated the ability to regulate inter-particle electronic coupling between metal nanoparticles based on the solution-phase properties of the dendrimers used to encapsulate and stabilize the particles. Here, we attempt to apply the knowledge derived in those studies of metal nanoparticles to understand the optical response observed in dendrimer-stabilized CdS quantum dots. Absorption and photoluminescence measurements have been combined with TEM to determine if dendrimerrelated aggregation phenomena affect optical response in these systems. The results show that dendrimer-stabilized CdS nanoparticles exhibit quite different aggregation behavior from the analogous metal nanoparticles. In direct contrast to the metal systems, the dendrimer-stabilized CdS nanoparticles tend to flocculate at low pH and are most stable at high pH. The degree of protection offered at high pH is dependent on the terminal functional groups of the dendrimer. Carboxylated dendrimers give higher protection than aminated dendimers and yield significantly higher luminescence efficiencies. The results challenge our prior conclusions regarding aggregation mechanisms in dendrimer nanocomposites and will provide important insight for future efforts to incorporate these nanoparticles into photovoltaic or luminescent devices.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Zhao L. Sun R. M. Crooks J. Am. Chem. Soc. 120, 4877 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    M. Zhao R. M. Crooks Angew. Chem., Int. Ed. Engl. 38, 364 (1999); Chem. Mater. 11, 3379 (1999)

    CAS  Article  Google Scholar 

  3. 3.

    B. I. Lemon R. M. Crooks J. Am. Chem. Soc. 122, 12886 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    L. Balogh D. A. Tomalia J. Am. Chem. Soc. 120, 7355 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    L. Balogh R. Valluzzi K. S. Laverduer S. P. Gido G. L. Hagnauer D. A. Tomalia J. Nanoparticle Res. 1, 353 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    K. Sooklal L. H. Hanus H. J. Ploehn C. J. Murphy Adv. Mater. 10, 1083 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    J. M. Huang K. Sooklal C. J. Murphy H. J. Ploehn Chem. Mater. 11, 3595 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    L. H. Hanus K. Sooklal C. J. Murphy H. J. Ploehn Langmuir 16, 2621 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    J. R. Lakowicz I. Gryczynski A. Gryczynski C. J. Murphy J. Phys. Chem. B 103, 7613 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    J. Zheng M. S. Stevenson R. S. Hikida P. G. Van Patten, J. Phys. Chem. B 106, 1252 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    T. Trindade Chem. Mater. 13, 3843 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    A. Henglein Chem. Rev. 98, 1861 (1989).

    Article  Google Scholar 

  13. 13.

    B. A. Korgel and H. G. Monbouquette J. Phys. Chem. B 101, 5010 (1997).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Douglas D. Richardson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richardson, D.D., Ely, S.R., McMurdo, M.J. et al. Optical Response of Dendrimer-Encapsulated CdS Quantum Dots—Regulation of Inter-Particle Electronic Coupling. MRS Online Proceedings Library 726, 113 (2002). https://doi.org/10.1557/PROC-726-Q11.3

Download citation