Effects of Ionic Flow and Amelogenins on the Lengthwise Growth of Octacalcium Phosphate Crystals in a Model System of Tooth Enamel Formation

Abstract

This paper briefly reviews our recent studies, which aimed to investigate the effects of 1) the Ca2+ and PO43- ions flow and 2) amelogenins on the lengthwise growth of octacalcium phosphate (OCP), which is a potent precursor of enamel apatite crystal. OCP crystals were grown at 37°C in a dual membrane system under various amount of ionic inflow into a reaction space, using 1) 5-30mM Ca and PO4 solutions as ionic sources and 2) extracted bovine amelogenin and recombinant murine amelogenins (rM179, rM166). With an increase in the amount of Ca2+ and/or PO43- ions flow, the length of OCP crystal increased, while the width decreased. As a result, the length to width (L/W) ratio of crystal changed from 3 to 95, while the width to thickness (W/T) ratio from 32 to 9. The effect of amelogenins was unique, regardless of the type of amelogenins: Rod-like and prism-like OCP crystals with large L/W (61∼107) and small W/T (1.3∼2.2) ratios were formed in 10% amelogenin gels. In contrast, characteristic ribbon-like OCP crystals grew without protein and with gelatin, albumin, polyacrylamide gel and agarose gel. Specific interaction of amelogenins with OCP crystal was ascribed to the self-assembly property of amelogenin molecules and their hydrophobic nature. It was suggested that ionic flow and amelogenins play some critical roles in the elongated growth of enamel crystals.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.U. Nylen, E.D. Eanes and K.A. Omnel, J. Cell Biol. 18, 109 (1963).

    Article  CAS  Google Scholar 

  2. 2.

    B. Kerebel, G. Daculsi and L.M. Kerebel, J. Dent. Res. 58B, 844 (1979).

    Article  Google Scholar 

  3. 3.

    T. Kawamoto and M. Shimizu, Calcif. Tissue Int. 46, 406 (1990).

    Article  CAS  Google Scholar 

  4. 4.

    T. Kawamoto and M. Shimizu, Jpn. J. Oral Biol. 36, 365 (1994).

    Article  CAS  Google Scholar 

  5. 5.

    J.E. Eastoe, J Dent. Res. 58B, 753 (1979).

    Article  Google Scholar 

  6. 6.

    J.D. Termine, A.B. Belcourt, P.J. Christener, M.K. Conn and M.U. Nylen, J Biol. Chem. 255, 9760 (1980).

    CAS  Google Scholar 

  7. 7.

    T. P. Hopp and K. R. Woods, Proc. Natl. Acad. Sci. USA 78, 3824 (1981).

    Article  CAS  Google Scholar 

  8. 8.

    J. Moradian-Oldak, J.P. Simmer, E.C. Lau, P.E. Sarte, H.C. Slavkin and A.G. Fincham, Biopolymers 34, 1339 (1994).

    Article  CAS  Google Scholar 

  9. 9.

    A.G. Fincham, J. Moradian-Oldak, T.G.H. Diekwisch, D.M. Layaruu, J.T. Wright, P. Bringas and H.C. Slavkin, J. Struct. Biol 115, 50 (1995).

    Article  CAS  Google Scholar 

  10. 10.

    J. Moradian-Oldak, W. Leung and A.G. Fincham, J Struct Biol. 122, 320 (1998).

    Article  CAS  Google Scholar 

  11. 11.

    G. Nikifolk and N.S. Simmons, J. Dent. Res. 44, 1119 (1965).

    Article  Google Scholar 

  12. 12.

    M. Iijima, “Formation of Octacalcium Phosphate in vitro”, Monographs in Oral SciVol.18. / Octacalcium Phosphate, ed. L.C. Chow and E.D. Eanes (Karger AG, 2001) pp 17–49.

  13. 13.

    J. Moradian-Oldak, Matrix Biology 20, 293 (2001).

    Article  CAS  Google Scholar 

  14. 14.

    M. Iijima, Y. Moriwaki, T. Takagi and J. Moradian-Oldak, J. Crystal Growth 222, 615 (2001)

    Article  CAS  Google Scholar 

  15. 15.

    M. Iijima, K. Hayashi and Y. Moriwaki, J. Crystal Growth 234, 539 (2002).

    Article  CAS  Google Scholar 

  16. 16.

    M. Iijima, Y. Moriwaki, H.B. Wen, A.G. Fincham and J. Moradian-Oldak, J. Dent. Res. 81, 69 (2002).

    Article  CAS  Google Scholar 

  17. 17.

    T. Takagi, M. Suzuki, T. Baba, K. Minegishi and S. Sasaki, Biochem. Biophysics. Res. Comm. 121, 592 (1984).

    Article  CAS  Google Scholar 

  18. 18.

    H. Shimokawa, Y. Ogata, S. Sasaki, M.E. Sobel, C.I. McQuillan, J.D. Termine and M.F. Young, Adv. Dent. Res. 1, 293 (1987).

    Article  CAS  Google Scholar 

  19. 19.

    J.P. Simmer, E.C. Lau, C.C. Hu, P. Bringas, V. Santos, T. Aoba, M. Lacey, D. Nelson, M. Zeichner-David, M.L. Snead, H.C. Slavkin and A.G. Fincham Calcif. Tissue Int. 54, 312 (1994).

    Article  CAS  Google Scholar 

  20. 20.

    T.P. Hopp and K.R. Woods, Proc. Natl. Acad. Sci. USA 78, 3824 (1981).

    Article  CAS  Google Scholar 

  21. 21.

    W.E. Brown, J.P. Smith, J.R. Lehr and A.W. Frazier, Nature 196, 1048 (1962).

    Article  CAS  Google Scholar 

  22. 22.

    H.B. Wen, J. Moradian-Oldak, W. Leung, P. Bringas Jr and A.G. Fincham, J. Struct. Biol. 126, 42 (1999).

    Article  CAS  Google Scholar 

  23. 23.

    H.B. Wen, A.G. Fincham and J. Moradian-Oldak, Matrix. Biol. 20, 387 (2001).

    Article  CAS  Google Scholar 

  24. 24.

    R. Ruchel and M.D. Brager, Anal. Biochem. 68, 415 (1975).

    Article  CAS  Google Scholar 

  25. 25.

    H.B. Wen, J. Moradian-Oldak and A.G. Fincham, J. Dent. Res. 79, 1902 (2000).

    Article  CAS  Google Scholar 

  26. 26.

    T.G.H. Diekkwisch, B.J. Berman, S. Gentner and H.C. Clavkin, Cell Tissue Res. 279, 149 (1995).

    Article  Google Scholar 

  27. 27.

    G. Daculsi, L.M. Kerebel and D. Mitre, “Enamel crystals: size, shape, and length and growing process; high resolution TEM and biochemical study.” Tooth Enamel IV, ed. R.W. Fearnhead and S. Suga, (Elsevier, 1984) pp. 14–18.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Iijima.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iijima, M., Moriwaki, Y., Wen, H.B. et al. Effects of Ionic Flow and Amelogenins on the Lengthwise Growth of Octacalcium Phosphate Crystals in a Model System of Tooth Enamel Formation. MRS Online Proceedings Library 724, N6.4 (2002). https://doi.org/10.1557/PROC-724-N6.4

Download citation