Particle Size Dependent Magnetoresistance and Magnetothermoelectric Power Of La0.5Pb0.5MnO3 Showing Metal-Insulator Transition

Abstract

Particle size dependent transport properties (resistivity and thermopower) of La0.5Pb0.5MnO3 has been investigated both in presence and in absence of magnetic field B=0.0-1.5T (maximum). All the samples show metal-insulator transition (MIT) with a peak at the MIT temperature (Tp). Magnetic field decreases the resistivity with an increase in the peak temperature Tp. Particle size, conductivity and Tp of the sample increase with increasing annealing time. High temperature semiconducting (insulating) part of the resistivity curve is divided into two distinct regimes. Resistivity data for T>qϘ/2, can be well fitted with the nearest neighbor small polaron hopping (SPH) model. Polaron hopping energy (WH) decreases with increase of particle size. The lower temperature part (Tp>T>qϘ/2) of the semiconducting (insulating) regime is found to follow variable range hopping (VRH) model. With the increase of particle size, the temperature range of validity of the VRH mechanism decreases. The low temperature metallic regime (for T<Tp) of the resistivity (both in absence and in presence of field) data fit well with ρ = ρ0 +ρ2.5 T2.5 and transport mechanism in this region is mainly dominated by magnon-carrier scattering (~T2.5). Particle size has, however, comparatively little effect on Seebeck coefficient (S). In all the samples with different particle sizes, S changes sign below Tp. In contrast to magnetoresistance, application of magnetic field increases S at low temperature (T<Tp) for these samples. Similar to the resistivity results, thermopower data in the metallic phase (both for B=0.0 and 1.5T) can also be analyzed by considering magnon-scattering term along with an additional spin-wave fluctuation term (~T4).

This is a preview of subscription content, access via your institution.

References

  1. 1

    M. McCormack, S. Jin, T. H. Tiefel, R. M. Fleming, J. M. Phillips and R. Ramesh; Appl. Phys. Lett. 64, 3045 (1994).

    CAS  Article  Google Scholar 

  2. 2

    C. Zener, Phys. Rev. 82, 403 (1951).

    CAS  Article  Google Scholar 

  3. 3

    A. J. Millis, P. B. Littlewood, B. I. Shraiman, Phys. Rev. Lett 74, 5144 (1995).

    CAS  Article  Google Scholar 

  4. 4

    R. Mahesh, R. Mahendiran, A. K. RayChaudhuri, C. N. R. Rao, Appl. Phys. Lett. 68, 2291 (1996).

    CAS  Article  Google Scholar 

  5. 5

    R. Mahendiran, R. Mahesh, A. K. RayChaudhuri, C. N. R. Rao, Solid State Comm. 99, 149 (1996).

    CAS  Article  Google Scholar 

  6. 6

    A. Gupta et.al, Phys. Rev. B 54, R15629 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Aritra Banerjee, S. Pal, and B. K. Chaudhuri, J. Chemical Physics 115, 1550 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Aritra Banerjee, S. Pal, S. Bhattacharya, B. K. Chaudhuri and H. D. Yang, Phys. Rev. B 64, 104428 (2001); Sudipta Pal, Aritra Banerjee, E. Rozenberg and B. K., Chaudhuri, J. Appl. Phys. 89, 4955 (2001).

    Article  Google Scholar 

  9. 9

    N. Zhang, W. Yang, W. Ding, D. Xing, Y. Du, Solid State Comm. 109, 537 (1999).

    CAS  Article  Google Scholar 

  10. 10

    G. Jeffrey Snyder, R. Hiskes, S. DiCarolis, M. R. Beasley, T. H. Geballe, Phys. Rev. B 53, 14434 (1996).

    CAS  Article  Google Scholar 

  11. 11

    L. Pi, L. Zheng, Y. Zhang, Phys. Rev. B 61, 8917 (2000).

    CAS  Article  Google Scholar 

  12. 12

    J. M. De Teresa, M. R. Ibarra, J. Blasco et. al., Phys. Rev. B 54, 1187 (1996).

    Article  Google Scholar 

  13. 13

    A. Urushibara, Y. Morotimo, T. Arima et. al., Phys. Rev. B 51, 14103 (1995).

    CAS  Article  Google Scholar 

  14. 14

    P. Schiffer, A. P. Ramirez, W. Bao, S-W. Cheong, Phys. Rev. lett. 75, 3336 (1995).

    CAS  Article  Google Scholar 

  15. 15

    N. F. Mott and E. A. Davis, in “Electronics process in non crystalline materials”, Clarendon press, Oxford, 1971.

    Google Scholar 

  16. 16

    R. Mahendiran, S. K. Tiwary, A. K. RayChaudhuri, T. V. Ramakrishnan, R. Mahesh, N. Rangavittal, C. N. R. Rao, Phys. Rev. B 53, 3348 (1996).

    CAS  Article  Google Scholar 

  17. 17

    P. Mandal, Phys. Rev. B 61, 14675 (2000).

    CAS  Article  Google Scholar 

  18. 18

    S. Chatterjee, P. H. Chou, C. F. Chang, I. P. Hong, H. D. Yang, Phys. Rev. B. 61 6106 (2000).

    CAS  Article  Google Scholar 

  19. 19

    K. Sega, Y. Kuroda, H. Sakata, J. Material Science 33, 1303 (1998).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. K. Chaudhuri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Banerjee, A., Pal, S. & Chaudhuri, B.K. Particle Size Dependent Magnetoresistance and Magnetothermoelectric Power Of La0.5Pb0.5MnO3 Showing Metal-Insulator Transition. MRS Online Proceedings Library 718, 725 (2002). https://doi.org/10.1557/PROC-718-D7.25

Download citation