Elastic Properties of Calcium Oxide Perovskites

Abstract

The equations of state and axial moduli of the CaBO3 perovskites (B=Zr,Sn,Ti,Ge) and CaFeO2.5 with the brownmillerite structure have been determined using high-pressure, singlecrystal X-ray diffraction. The bulk modulus-specific volume relationship for the Ca-perovskites is nonlinear, with CaSnO3 and CaZrO3 displaying anomalous stiffening (higher bulk moduli) than previously reported and predicted [1,2]. The axial moduli of the a- and c-axes decrease steadily by ~30% from the least-distorted of the Pbnm perovskites, CaGeO3, to the most distorted, CaZrO3, while the b-axis shows little change. The net result is a threefold increase in the anisotropy of the axial moduli of CaSnO3 and CaZrO3 (~21%) relative to CaGeO3 and CaTiO3 (~4-8%). The bulk modulus of CaFeO2.5 falls significantly below the trend for the stoichiometric perovskites. The introduction of 1/6 vacancies on the oxygen positions softens the perovskite structure by 25%.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.C. Liebermann, L.E.A. Jones, and A.E. Ringwood, Phys. Earth Planet. Int. 14, 165 (1977).

    CAS  Article  Google Scholar 

  2. 2.

    N.L. Ross and R.J. Angel, Amer. Miner. 84, 277 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    A.M. Glazer, Acta Cryst. B 28, 3384 (1972).

    CAS  Article  Google Scholar 

  4. 4.

    P.M. Woodward, Acta Cryst. B 53, 32 (1997).

    Article  Google Scholar 

  5. 5.

    S. Sasaki, C.T. Prewitt, and R.C. Liebermann, Am. Miner. 68, 1189 (1983).

    CAS  Google Scholar 

  6. 6.

    J. Kung, R.J. Angel, and N.L. Ross, Phys. Chem. Minerals. 28, 35 (2000).

    Article  Google Scholar 

  7. 7.

    N.L. Ross and T.D. Chaplin, J. Sol. St. Chem., submitted.

  8. 8.

    N.L. Ross, R.J. Angel, and F. Seifert, Phys. Earth Planet. Int. 129, 145 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Wang, D.J. Weidner, and F. Guyot, J. Geophys. Res. B 101, 661 (1996).

    CAS  Article  Google Scholar 

  10. 10.

    S.H. Shim, T.S. Duffy, and G.Y. Shen, Phys. Earth Planet. Int. 120, 327 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    D.R. Allan, R. Miletich, R., and R.J. Angel, Rev. Sci. Instrum. 67, 840 (1996).

    CAS  Article  Google Scholar 

  12. 12.

    R.J. Angel, D.T. Allan, R. Militech, and L.W. Finger, J. Appl. Crystallogr. 30 461 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    R.J. Angel, in High-Temperature and High-Pressure Crystal Chemistry, edited by R.M. Hazen and R.T. Downs, (Rev. Miner. Geochem. 41, Min. Soc.Amer., Washington D.C., 2000), pp. 35–60.

  14. 14.

    D.L. Anderson and O.L. Anderson, J. Geophys. Res., 75, 3494 (1970).

    CAS  Article  Google Scholar 

  15. 15.

    S. Sasaki, C.T. Prewitt, J.D. Bass and W.A. Schulze, Acta Cryst. C 43, 1668 (1987)

    Article  Google Scholar 

  16. 16.

    A. Vegas, Acta Cryst. B. 42, 167 (1986).

    Article  Google Scholar 

  17. 17.

    H.J.A. Koopmans, G.M.H. van de Velde, and P.J. Gellings, Acta Cryst. C 39, 1323 (1983).

    Article  Google Scholar 

  18. 18.

    W.H. Baur, J. Sol. St. Chem. 97, 243 (1992).

    CAS  Article  Google Scholar 

  19. 19.

    J.P. Brodholt, Nature 407, 620 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nancy L. Ross.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ross, N.L., Angel, R.J., Kung, J. et al. Elastic Properties of Calcium Oxide Perovskites. MRS Online Proceedings Library 718, 24 (2002). https://doi.org/10.1557/PROC-718-D2.4

Download citation