Thermal Evolution of Extrinsic Defects in Ion Implanted Silicon: Current Understanding and Modelling

Abstract

We present an extensive study of the thermal evolution of the extended defects found in ion implanted Si as a function of annealing conditions. We will first review their structure and energetics and show that the defect kinetics can be described by an Ostwald ripening process whereby the defects exchange Si atoms and evolve in size and type to minimise their formation energy. Finally, we will present a physically based model to predict the evolution of extrinsic defects during annealing through the calculation of defect densities, size distributions, number of clustered interstitials and free-interstitial supersaturation. We will show some successful applications of our model to a variety of experimental conditions and give an example of its predictive capabilities at ultra low implantation energies.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    International Technology Roadmap for Semiconductors (SIA, Austin, 2000)

  2. [2]

    S. Baek, T. Jang and H. Hwang, Appl. Phys. Lett. 80, 2272 (2002).

    CAS  Article  Google Scholar 

  3. [3]

    G. Kerrien, J. Boulmer, D. Debarre, D. Bouchier, A. Grouillet and D. Lenoble, Appl. Surf. Sci. 186, 45 (2002).

    CAS  Article  Google Scholar 

  4. [4]

    S. Thomson, P. Packan and M. Bohr, Intel Technol. J., Q3 (1998).

  5. [5]

    P.A. Stolk, H.J. Gossmann, D.J. Eaglesham, D.C. Jacobson, C.S. Rafferty, G.H. Gilmer, M. Jaraiz, J.M. Poate, H.S. Luftman, T.E. Haynes, J. Appl. Phys. 81, 6031 (1997).

    CAS  Article  Google Scholar 

  6. [6]

    A. Claverie, B. Colombeau, G. Ben Assayag, C. Bonafos, F. Cristiano, M. Omri and B. de Mauduit, MSSP, 610, (2000).

  7. [7]

    J.L. Hutchison, A.L. Aseev and L.I. Fedina, Inst. Phys. Conf. Ser. 134, 41 (1993).

    CAS  Google Scholar 

  8. [8]

    D. J. Eaglesham, P.A. Stolk, J.Y. Cheng, H.J. Gossmann, T.E. Haynes and J.M. Poate, Inst. Phys. Conf. Ser. 146, 451 (1995).

    CAS  Google Scholar 

  9. [9]

    S. Takeda, Proc. Microsc. Semicond. Mater. Conf. (Oxford, 7–10 April, 1997) Inst. Phys. Conf. Ser. 157, 25 (1997).

    Google Scholar 

  10. [10]

    C.A. Ferreira Lima and A. Howie Phil. Mag. 34, 1057 (1976).

    CAS  Article  Google Scholar 

  11. [11]

    I.G. Salisbury and M.H. Loretto Phil. Mag. A39, 317 (1979).

    Article  Google Scholar 

  12. [12]

    S. Takeda Jpn. J. Appl. Phys. 30, L639 (1991).

    CAS  Article  Google Scholar 

  13. [13]

    S. Takeda, M. Kohyama and K. IbePhil. Mag. A70, 287 (1994).

    Google Scholar 

  14. [14]

    D.J. Eaglesham, P.A. Stolk, H.J. Gossmann and J.M. Poate, Appl. Phys. Lett., 65, 2305 (1994).

    CAS  Article  Google Scholar 

  15. [15]

    S. Takeda, S. Muto and M. Hirata Mat. Res. Soc. Symp. Proc. 262, 209 (1992).

    CAS  Article  Google Scholar 

  16. [16]

    V.C. Venezia, R. Kalyanaraman, H.J.L. Gossmann, and C.S Rafferty and P. Werner, Appl. Phys. Lett. 79, 1429 (2001).

    CAS  Article  Google Scholar 

  17. [17]

    A. Claverie, L.F. Giles, M. Omri, B. de Mauduit, G. Ben Assayag and D. Mathiot, Nucl. Instr. Meth. B, 147, 1 (1999).

    CAS  Article  Google Scholar 

  18. [18]

    R. Bicknell J. of Microsc. 98, 165 (1973).

    Article  Google Scholar 

  19. [19]

    M.L. Jenkins, D.J.H. Cockayne and M.J. Whelan, J. of Microsc. 98, 155 (1973).

    Article  Google Scholar 

  20. [20]

    B. de Mauduit, L. Laânab, C. Bergaud, M.M. Faye, A. Martinez, and A. Claverie, Nucl. Inst. and Meth. B, 84, 190 (1994).

    Article  Google Scholar 

  21. [21]

    L.J. Chen and I.W. Wu, J. Appl. Phys. 52, 3310 (1981).

    CAS  Article  Google Scholar 

  22. [22]

    I.G. Salisbury Acta Metall. 30, 627 (1982).

    CAS  Article  Google Scholar 

  23. [23]

    D.K. Sadana and J. Washburn Phil. Mag. B46, 611 (1982).

    Article  Google Scholar 

  24. [24]

    I.W. Wu and L.J. Chen J. Appl. Phys. 58, 3032 (1985).

    CAS  Article  Google Scholar 

  25. [25]

    K.S. Jones, S. Prussin and E.R. Weber Appl. Phys. A45, 1 (1988).

    CAS  Article  Google Scholar 

  26. [26]

    G.Z. Pan, K.N. Tu and A. Pruss in J. Appl. Phys. 81, 1 (1997).

    Article  Google Scholar 

  27. [27]

    R. Raman, M.E. Law, V. Krishnamoorthy and K.S. Jones Appl. Phys. Lett. 74, 700 (1999)

    CAS  Article  Google Scholar 

  28. [28]

    L. Laânab, C. Bergaud, MM. Faye, J. Fauré, A. Martinez and A. Claverie, Mat. Res. Soc. Symp. Proc., 279, 381 (1993).

    Article  Google Scholar 

  29. [29]

    M. Omri, L. F. Giles, B. de Mauduit and A. Claverie,Mat. Res. Soc. Proc., (1999).

  30. [30]

    M.D. Giles, J. Electrochem. Soc., 138, 1160 (1991).

    CAS  Article  Google Scholar 

  31. [31]

    B. Herner, H.J. Gossman, L. Pelaz, G.H. Gilmer, M. Jaraiz, D.C. Jacobson and D.J. Eaglesham, J. Appl. Phys. 83, 6182 (1998).

    CAS  Article  Google Scholar 

  32. [32]

    E. Lampin, V. Senez and A. Claverie, J. Appl. Phys., 85, 8137 (1999).

    CAS  Article  Google Scholar 

  33. [33]

    A. Claverie, C. Bonafos, D. Alquier and A. Martinez, Solid State Phenomena, V47-48, 195 (1996).

    Google Scholar 

  34. [34]

    J.W. Corbett, J.P. Karins and T.Y. Tan, Nucl. Intr. and Methods in Phys. Res., B182-183, 457 (1981).

    Google Scholar 

  35. [35]

    F. Cristiano, B. Colombeau, N.E.B Cowern and A. Claverie,private communication.

  36. [36]

    H.G.A. Huizing, C.G.G Visser, N.E.B Cowern, P.A. Stolk and R.C.M de Kruif, Appl. Phys. Lett, 69, 1211 (1996).

    CAS  Article  Google Scholar 

  37. [37]

    J. Li and K.S. Jones, Appl. Phys. Lett. 73 (25), 3748 (1998).

    CAS  Article  Google Scholar 

  38. [38]

    F. Cristiano, J. Grisolia, B. Colombau, M. Omri, B. deMauduit, A. Claverie, F. Giles, N. Cowern, J. Appl. Phys. 87, 8420 (2000).

    CAS  Article  Google Scholar 

  39. [41]

    N.E.B. Cowern, D. Alquier, M. Omri, A. Claverie and A. Nejim, Nucl. Instr. Meth. in Phys. Res. B148, 257 (1999).

    Article  Google Scholar 

  40. [42]

    B. Colombeau, F. Cristiano, J.C. Marrot, G. Ben Assayag and A. Claverie, Mat. Res. Soc. Symp. Proc. 2001, in press.

    Google Scholar 

  41. [43]

    H. Schroeder, P. Fichner, H. Trinkaus, Fundamental aspects of inert gasesu solids, Plenum Press New York, 279, 289 (1991).

    CAS  Article  Google Scholar 

  42. [44]

    C. Bonafos, B. Colombeau, A. Altibelli, M. Carrada, G. Ben Assayag, B. Garrido, and A. Claverie, NIM B, 178, 17 (2001).

    CAS  Article  Google Scholar 

  43. [45]

    M.M. De Souza, C.K. Ngw, M. Shishkin and E.M. Narayanan, Phys. Rev. Lett., 83, 1799 (1999).

    Article  Google Scholar 

  44. [46]

    B. Colombeau, PhD Dissertation, Toulouse, France, 2001.

    Google Scholar 

  45. [47]

    D. Alquier, N. Cowern, P. Pichler, C. Armand, A. Martinez, D. Mathiot, M. Omri, A. Claverie, MRSSP, 532, 67 (1998).

    CAS  Article  Google Scholar 

  46. [48]

    H.S. Chao, S.W. Crowder, P.B. Griffin, J.D. Plummer, J. Appl. Phys., 79, 2352 (1996).

    CAS  Article  Google Scholar 

  47. [49]

    A. Claverie, B. Colombeau, F. Cristiano, A. Altibelli and C. Bonafos, MRSSP 2001, in press.

    Google Scholar 

  48. [50]

    B. Colombeau, F. Cristiano, A. Altibelli, C. Bonafos, G. Ben Assayag, A. Claverie, Appl. Phys. Lett., 78, 940 (2001).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benjamin Colombeau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cristiano, F., Colombeau, B., de Mauduit, B. et al. Thermal Evolution of Extrinsic Defects in Ion Implanted Silicon: Current Understanding and Modelling. MRS Online Proceedings Library 717, 57 (2002). https://doi.org/10.1557/PROC-717-C5.7

Download citation