Skip to main content
Log in

Thermal Evolution of Extrinsic Defects in Ion Implanted Silicon: Current Understanding and Modelling

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present an extensive study of the thermal evolution of the extended defects found in ion implanted Si as a function of annealing conditions. We will first review their structure and energetics and show that the defect kinetics can be described by an Ostwald ripening process whereby the defects exchange Si atoms and evolve in size and type to minimise their formation energy. Finally, we will present a physically based model to predict the evolution of extrinsic defects during annealing through the calculation of defect densities, size distributions, number of clustered interstitials and free-interstitial supersaturation. We will show some successful applications of our model to a variety of experimental conditions and give an example of its predictive capabilities at ultra low implantation energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors (SIA, Austin, 2000)

  2. S. Baek, T. Jang and H. Hwang, Appl. Phys. Lett. 80, 2272 (2002).

    Article  CAS  Google Scholar 

  3. G. Kerrien, J. Boulmer, D. Debarre, D. Bouchier, A. Grouillet and D. Lenoble, Appl. Surf. Sci. 186, 45 (2002).

    Article  CAS  Google Scholar 

  4. S. Thomson, P. Packan and M. Bohr, Intel Technol. J., Q3 (1998).

  5. P.A. Stolk, H.J. Gossmann, D.J. Eaglesham, D.C. Jacobson, C.S. Rafferty, G.H. Gilmer, M. Jaraiz, J.M. Poate, H.S. Luftman, T.E. Haynes, J. Appl. Phys. 81, 6031 (1997).

    Article  CAS  Google Scholar 

  6. A. Claverie, B. Colombeau, G. Ben Assayag, C. Bonafos, F. Cristiano, M. Omri and B. de Mauduit, MSSP, 610, (2000).

  7. J.L. Hutchison, A.L. Aseev and L.I. Fedina, Inst. Phys. Conf. Ser. 134, 41 (1993).

    CAS  Google Scholar 

  8. D. J. Eaglesham, P.A. Stolk, J.Y. Cheng, H.J. Gossmann, T.E. Haynes and J.M. Poate, Inst. Phys. Conf. Ser. 146, 451 (1995).

    CAS  Google Scholar 

  9. S. Takeda, Proc. Microsc. Semicond. Mater. Conf. (Oxford, 7–10 April, 1997) Inst. Phys. Conf. Ser. 157, 25 (1997).

    Google Scholar 

  10. C.A. Ferreira Lima and A. Howie Phil. Mag. 34, 1057 (1976).

    Article  CAS  Google Scholar 

  11. I.G. Salisbury and M.H. Loretto Phil. Mag. A39, 317 (1979).

    Article  Google Scholar 

  12. S. Takeda Jpn. J. Appl. Phys. 30, L639 (1991).

    Article  CAS  Google Scholar 

  13. S. Takeda, M. Kohyama and K. IbePhil. Mag. A70, 287 (1994).

    Google Scholar 

  14. D.J. Eaglesham, P.A. Stolk, H.J. Gossmann and J.M. Poate, Appl. Phys. Lett., 65, 2305 (1994).

    Article  CAS  Google Scholar 

  15. S. Takeda, S. Muto and M. Hirata Mat. Res. Soc. Symp. Proc. 262, 209 (1992).

    Article  CAS  Google Scholar 

  16. V.C. Venezia, R. Kalyanaraman, H.J.L. Gossmann, and C.S Rafferty and P. Werner, Appl. Phys. Lett. 79, 1429 (2001).

    Article  CAS  Google Scholar 

  17. A. Claverie, L.F. Giles, M. Omri, B. de Mauduit, G. Ben Assayag and D. Mathiot, Nucl. Instr. Meth. B, 147, 1 (1999).

    Article  CAS  Google Scholar 

  18. R. Bicknell J. of Microsc. 98, 165 (1973).

    Article  Google Scholar 

  19. M.L. Jenkins, D.J.H. Cockayne and M.J. Whelan, J. of Microsc. 98, 155 (1973).

    Article  Google Scholar 

  20. B. de Mauduit, L. Laânab, C. Bergaud, M.M. Faye, A. Martinez, and A. Claverie, Nucl. Inst. and Meth. B, 84, 190 (1994).

    Article  Google Scholar 

  21. L.J. Chen and I.W. Wu, J. Appl. Phys. 52, 3310 (1981).

    Article  CAS  Google Scholar 

  22. I.G. Salisbury Acta Metall. 30, 627 (1982).

    Article  CAS  Google Scholar 

  23. D.K. Sadana and J. Washburn Phil. Mag. B46, 611 (1982).

    Article  Google Scholar 

  24. I.W. Wu and L.J. Chen J. Appl. Phys. 58, 3032 (1985).

    Article  CAS  Google Scholar 

  25. K.S. Jones, S. Prussin and E.R. Weber Appl. Phys. A45, 1 (1988).

    Article  CAS  Google Scholar 

  26. G.Z. Pan, K.N. Tu and A. Pruss in J. Appl. Phys. 81, 1 (1997).

    Article  Google Scholar 

  27. R. Raman, M.E. Law, V. Krishnamoorthy and K.S. Jones Appl. Phys. Lett. 74, 700 (1999)

    Article  CAS  Google Scholar 

  28. L. Laânab, C. Bergaud, MM. Faye, J. Fauré, A. Martinez and A. Claverie, Mat. Res. Soc. Symp. Proc., 279, 381 (1993).

    Article  Google Scholar 

  29. M. Omri, L. F. Giles, B. de Mauduit and A. Claverie,Mat. Res. Soc. Proc., (1999).

  30. M.D. Giles, J. Electrochem. Soc., 138, 1160 (1991).

    Article  CAS  Google Scholar 

  31. B. Herner, H.J. Gossman, L. Pelaz, G.H. Gilmer, M. Jaraiz, D.C. Jacobson and D.J. Eaglesham, J. Appl. Phys. 83, 6182 (1998).

    Article  CAS  Google Scholar 

  32. E. Lampin, V. Senez and A. Claverie, J. Appl. Phys., 85, 8137 (1999).

    Article  CAS  Google Scholar 

  33. A. Claverie, C. Bonafos, D. Alquier and A. Martinez, Solid State Phenomena, V47-48, 195 (1996).

    Google Scholar 

  34. J.W. Corbett, J.P. Karins and T.Y. Tan, Nucl. Intr. and Methods in Phys. Res., B182-183, 457 (1981).

    Google Scholar 

  35. F. Cristiano, B. Colombeau, N.E.B Cowern and A. Claverie,private communication.

  36. H.G.A. Huizing, C.G.G Visser, N.E.B Cowern, P.A. Stolk and R.C.M de Kruif, Appl. Phys. Lett, 69, 1211 (1996).

    Article  CAS  Google Scholar 

  37. J. Li and K.S. Jones, Appl. Phys. Lett. 73 (25), 3748 (1998).

    Article  CAS  Google Scholar 

  38. F. Cristiano, J. Grisolia, B. Colombau, M. Omri, B. deMauduit, A. Claverie, F. Giles, N. Cowern, J. Appl. Phys. 87, 8420 (2000).

    Article  CAS  Google Scholar 

  39. N.E.B. Cowern, D. Alquier, M. Omri, A. Claverie and A. Nejim, Nucl. Instr. Meth. in Phys. Res. B148, 257 (1999).

    Article  Google Scholar 

  40. B. Colombeau, F. Cristiano, J.C. Marrot, G. Ben Assayag and A. Claverie, Mat. Res. Soc. Symp. Proc. 2001, in press.

    Google Scholar 

  41. H. Schroeder, P. Fichner, H. Trinkaus, Fundamental aspects of inert gasesu solids, Plenum Press New York, 279, 289 (1991).

    Article  CAS  Google Scholar 

  42. C. Bonafos, B. Colombeau, A. Altibelli, M. Carrada, G. Ben Assayag, B. Garrido, and A. Claverie, NIM B, 178, 17 (2001).

    Article  CAS  Google Scholar 

  43. M.M. De Souza, C.K. Ngw, M. Shishkin and E.M. Narayanan, Phys. Rev. Lett., 83, 1799 (1999).

    Article  Google Scholar 

  44. B. Colombeau, PhD Dissertation, Toulouse, France, 2001.

    Google Scholar 

  45. D. Alquier, N. Cowern, P. Pichler, C. Armand, A. Martinez, D. Mathiot, M. Omri, A. Claverie, MRSSP, 532, 67 (1998).

    Article  CAS  Google Scholar 

  46. H.S. Chao, S.W. Crowder, P.B. Griffin, J.D. Plummer, J. Appl. Phys., 79, 2352 (1996).

    Article  CAS  Google Scholar 

  47. A. Claverie, B. Colombeau, F. Cristiano, A. Altibelli and C. Bonafos, MRSSP 2001, in press.

    Google Scholar 

  48. B. Colombeau, F. Cristiano, A. Altibelli, C. Bonafos, G. Ben Assayag, A. Claverie, Appl. Phys. Lett., 78, 940 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristiano, F., Colombeau, B., de Mauduit, B. et al. Thermal Evolution of Extrinsic Defects in Ion Implanted Silicon: Current Understanding and Modelling. MRS Online Proceedings Library 717, 57 (2002). https://doi.org/10.1557/PROC-717-C5.7

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-717-C5.7

Navigation