Modeling of Self-Interstitial Diffusion in Implanted Molecular Beam Epitaxy Silicon


In this work a rate equations model describing the interstitials (I) diffusion in a trap containing medium is presented. The model takes into account the interstitial injection by implantation and annealing and the surface evaporation. We found an analytical approximated solution of the model which allows clarifying the interplay between the parameters involved and a simple comparison with experimental data obtained by the analysis of boron delta doping arrays broadening. The calculations allow to demonstrate that the I injected into the bulk and toward the surface at the end of the I clusters dissolution does not depend on the detailed time evolution of the I clusters, but only on the total amount of I produced by the implantation. The fitting of the experimental data allows to easily quantifying important physical parameters such as the I evaporation rate at the surface and the density of intrinsic interstitial traps. Applications of the model are shown in the case of MBE materials intentionally doped with substitutional C. The model successfully predicts the TED reduction by MBE intrinsic I-traps and allows to estimate the average composition of Interstitial-Carbon clusters.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. A. Stolk, J.H.J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman and T. E. Haynes, J. Appl. Phys. 81, 6031 (1997).and reference therein.

    CAS  Article  Google Scholar 

  2. 2.

    N. E. B. Cowern, K. T. F. Janssen, G. F. A. van de Walle, and D. J. Gravesteijn, Phys. Rev. Lett. 65, 2434 (1990).

    CAS  Article  Google Scholar 

  3. 3.

    N. E. B. Cowern, Appl. Phys. Lett. 64, 2646 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    D. R. Lim, C. S. Rafferty, and F. P. Clemens, Appl. Phys. Lett. 67, 2303 (1995).

    Article  Google Scholar 

  5. 5.

    H. Bracht, N. A. Stolwijk, and H. Mehrer, Phys. Rev. B 52, 16 542 (1995).

    Google Scholar 

  6. 6.

    A. Ural, P. B. Griffin, and J. D. Plummer, Phys. Rev. Lett. 83, 3454 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. A. Huizing, J. G. M. van Berkum, F. Cristiano, A. Claverie, M. Jaraiz, Phys. Rev. Lett. 82, 4460 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    S. Mirabella, A. Coati, D. De Salvador, E. Napoletani, A. Mattoni, G. Bisognin, M. Berti, A. Carnera and A.V. Drigo, S. Scalese, S. Pulvirenti, A. Terrasi, and F. Priolo, Phys. Rev. B 65, 045209 (2002).

    Article  Google Scholar 

  9. 9.

    P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Haddara, B.T. Folmer, M.E. Law, T. Buyuklimanli, Appl. Phys. Lett. 77, 1976 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods 174, 257 (1980).

    CAS  Article  Google Scholar 

  12. 12.

    S. Mirabella, S. Scalese, A. Terrasi, F. Priolo, A. Coati, D. De Salvador, E. Napolitani presented at the 2002 MRS Spring Meeting, San Francisco, CA, 2002 (unpublished).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. De Salvador.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Salvador, D., Mattoni, A., Napolitani, E. et al. Modeling of Self-Interstitial Diffusion in Implanted Molecular Beam Epitaxy Silicon. MRS Online Proceedings Library 717, 56 (2002).

Download citation