Skip to main content
Log in

Modeling of Self-Interstitial Diffusion in Implanted Molecular Beam Epitaxy Silicon

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this work a rate equations model describing the interstitials (I) diffusion in a trap containing medium is presented. The model takes into account the interstitial injection by implantation and annealing and the surface evaporation. We found an analytical approximated solution of the model which allows clarifying the interplay between the parameters involved and a simple comparison with experimental data obtained by the analysis of boron delta doping arrays broadening. The calculations allow to demonstrate that the I injected into the bulk and toward the surface at the end of the I clusters dissolution does not depend on the detailed time evolution of the I clusters, but only on the total amount of I produced by the implantation. The fitting of the experimental data allows to easily quantifying important physical parameters such as the I evaporation rate at the surface and the density of intrinsic interstitial traps. Applications of the model are shown in the case of MBE materials intentionally doped with substitutional C. The model successfully predicts the TED reduction by MBE intrinsic I-traps and allows to estimate the average composition of Interstitial-Carbon clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Stolk, J.H.J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman and T. E. Haynes, J. Appl. Phys. 81, 6031 (1997).and reference therein.

    Article  CAS  Google Scholar 

  2. N. E. B. Cowern, K. T. F. Janssen, G. F. A. van de Walle, and D. J. Gravesteijn, Phys. Rev. Lett. 65, 2434 (1990).

    Article  CAS  Google Scholar 

  3. N. E. B. Cowern, Appl. Phys. Lett. 64, 2646 (1994).

    Article  CAS  Google Scholar 

  4. D. R. Lim, C. S. Rafferty, and F. P. Clemens, Appl. Phys. Lett. 67, 2303 (1995).

    Article  Google Scholar 

  5. H. Bracht, N. A. Stolwijk, and H. Mehrer, Phys. Rev. B 52, 16 542 (1995).

    Google Scholar 

  6. A. Ural, P. B. Griffin, and J. D. Plummer, Phys. Rev. Lett. 83, 3454 (1999).

    Article  CAS  Google Scholar 

  7. N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. A. Huizing, J. G. M. van Berkum, F. Cristiano, A. Claverie, M. Jaraiz, Phys. Rev. Lett. 82, 4460 (1999).

    Article  CAS  Google Scholar 

  8. S. Mirabella, A. Coati, D. De Salvador, E. Napoletani, A. Mattoni, G. Bisognin, M. Berti, A. Carnera and A.V. Drigo, S. Scalese, S. Pulvirenti, A. Terrasi, and F. Priolo, Phys. Rev. B 65, 045209 (2002).

    Article  Google Scholar 

  9. P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989).

    Article  CAS  Google Scholar 

  10. Y. Haddara, B.T. Folmer, M.E. Law, T. Buyuklimanli, Appl. Phys. Lett. 77, 1976 (2000).

    Article  CAS  Google Scholar 

  11. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods 174, 257 (1980).

    Article  CAS  Google Scholar 

  12. S. Mirabella, S. Scalese, A. Terrasi, F. Priolo, A. Coati, D. De Salvador, E. Napolitani presented at the 2002 MRS Spring Meeting, San Francisco, CA, 2002 (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Salvador, D., Mattoni, A., Napolitani, E. et al. Modeling of Self-Interstitial Diffusion in Implanted Molecular Beam Epitaxy Silicon. MRS Online Proceedings Library 717, 56 (2002). https://doi.org/10.1557/PROC-717-C5.6

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-717-C5.6

Navigation