Simulation of Transient Enhanced Diffusion in Silicon Taking into Account Ostwald Ripening of Defects

Abstract

The transient enhanced diffusion (TED) of high-dose implanted P is simulated taking into account Ostwald ripening of end-of-range (EOR) defects. First, we integrated a basic diffusion model based on the simulation of in-diffusion, where no implanted damages are involved. Second, from low-dose implantation, we developed a model for TED due to {311} self-interstitial (I) clusters involving Ostwald ripening and the dissolution of {311} clusters. Third, from medium-dose implantation, we showed that P-I clusters should be taken into account, and during the diffusion, the clusters are dissolved to emit self-interstitials that also contribute to TED. Finally, from high-dose implantation, EOR defects are modeled and we derived a formula to describe the time-dependence for Ostwald ripening of EOR defects, which is more significant at higher temperatures and longer annealing times. The simulation satisfactorily predicts the TED for annealing conditions, where the calculations overestimate the diffusion without taking Ostwald ripening into account.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    P. A. Stolk, H.J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. Haynes, J. Appl. Phys. 81, 6031 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    K. S. Jones, S. Prussin, and E. R. Weber, Appl. Phys. A 45, 1 (1988).

    Article  Google Scholar 

  3. 3.

    M. Uematsu, J. Appl. Phys. 82, 2228 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    M. Yoshida, E. Arai, H. Nakamura, and Y. Terunuma, J. Appl. Phys. 45, 1498 (1974).

    CAS  Article  Google Scholar 

  5. 5.

    C. S. Rafferty, G. H. Gilmer, M. Jaraiz, D. J. Eaglesham, and H.J. Gossmann, Appl. Phys. Lett. 68, 2395 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    M. Uematsu, Jpn. J. Appl. Phys. 36, L982 (1997); J. Appl. Phys. 83, 120 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    H. S. Chao, P. B. Griffin, J. D. Plummer, and C. S. Rafferty, Appl. Phys. Lett. 69, 2113 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    E. Schroer and M. Uematsu, Jpn. J. Appl. Phys. 38, 7 (1999)

    CAS  Article  Google Scholar 

  9. 8a.

    M. Uematsu, Jpn. J. Appl. Phys. 38, 6188 (1999).

  10. 9.

    P. H. Keys, K. S. Jones, M. E. Law, M. Puga-Lambers, and S. M. Cea, MRS Spring Meeting 2001, J5.5.

    Google Scholar 

  11. 10.

    M. Uematsu, J. Appl. Phys. 84, 4781 (1998).

    CAS  Article  Google Scholar 

  12. 11.

    P. S. Choi, T. Su, R. D. Chang, P. K. Chu, and D. L. Kwong, Process Physics and Modeling in Semiconductor Technology (1996) Electrochem. Soc. Proc. vol. 96-4, p. 149.

    CAS  Google Scholar 

  13. 12.

    L. Pelaz, G. H. Gilmer, H.J. Gossmann, C. S. Rafferty, M. Jaraiz, and J. Barbolla, Appl. Phys. Lett. 74, 3657 (1999).

    CAS  Article  Google Scholar 

  14. 13.

    C. Bonafos, D. Mathiot, and A. Claverie, J. Appl. Phys. 83, 3008 (1998)

    CAS  Article  Google Scholar 

  15. 13a.

    E. Lampin, V. Senez, and A. Claverie, J. Appl. Phys. 85, 8137 (1999).

    CAS  Article  Google Scholar 

  16. 14.

    H. S. Chao, S. W. Crowder, P. B. Griffin, and J. D. Plummer, J. Appl. Phys. 79, 2352 (1996).

    CAS  Article  Google Scholar 

  17. 15.

    M. Uematsu, Jpn. J. Appl. Phys. 37, 5866 (1998).

    CAS  Article  Google Scholar 

  18. 16.

    M. Uematsu, Jpn. J. Appl. Phys. 38, L1213 (1999).

    CAS  Article  Google Scholar 

  19. 17.

    G. S. Oehrlein, R. Ghez, J. D. Fehribach, E. F. Gorey, T. O. Sedgwick, S. A. Cohen, and V. R. Deline, Proc. 3th Int. Conf. Defects in Semicond., eds. L. C. Kimerling and J. M. Parsey Jr, (Metallurgical Society of AIME, Warrenda, PA, 1984) p. 539.

  20. 18.

    M. Uematsu, Jpn. J. Appl. Phys. 38, 6188 (1999).

    CAS  Article  Google Scholar 

  21. 19.

    M. Uematsu, Jpn. J. Appl. Phys. 38, 3433 (1999); 39, 1006 (2000); 39, 1608 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masashi Uematsu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uematsu, M. Simulation of Transient Enhanced Diffusion in Silicon Taking into Account Ostwald Ripening of Defects. MRS Online Proceedings Library 717, 51 (2002). https://doi.org/10.1557/PROC-717-C5.1

Download citation