Thermal Stability and Substitutional Carbon Incorporation far above Solid-Solubility in Si1-xCx and Si1-x-yGexCy Layers Grown by Chemical Vapor Deposition using Disilane

Abstract

Growth conditions for epitaxy of Si1-x-yGexCx and Si1-xCx alloy layers on (100) silicon substrates by rapid thermal chemical vapor deposition (RTCVD) with disilane as the silicon source gas are described and the Si1-xCx conditions are compared to previously reported RTCVD growth conditions for epitaxy of Si1-xCx using silane as the source gas. The thermal stability of the layers at 850°C in nitrogen is examined using x-ray diffraction as a measure of the average substitutional carbon concentration in the layers after annealing. A characteristic time constant to describe the reduction of average substitutional carbon concentration in the layer is extracted from the XRD measurements. The characteristic time constants are found to agree within a factor of 3 with that observed in previous reports. However, the time constants are found to depend more strongly on the as-grown substitutional carbon concentration than what is predicted by simple precipitation kinetics, assuming carbon diffusion to a constant number of nucleation centers.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    H. Ruecker and B. Heinemann, Solid-State Elec., vol. 44, pp. 783, 2000.

    Article  Google Scholar 

  2. [2]

    R. L. Williams, G. C. Aers, N. L. Rowell, K. L. Brunner, W. Winter, and K. Eberl, Applied Physics Letters, vol. 72, pp. 1320, 1998.

    CAS  Article  Google Scholar 

  3. [3]

    K. Brunner, K. Eberl, and W. Winter, Phys. Rev. Lett., vol. 76, pp. 303, 1996.

    CAS  Article  Google Scholar 

  4. [4]

    O. G. Schmidt and K. Eberl, Phys. Rev. Lett., vol. 80, pp. 3396, 1998.

    CAS  Article  Google Scholar 

  5. [5]

    J. Osten, K. Myeongcheol, K. Pressel, and K. Zaumseil, J. Appl. Phys., vol. 80, pp. 6711, 1996.

    CAS  Article  Google Scholar 

  6. [6]

    T. O. Mitchell, J. L. Hoyt, and J. F. Gibbons, Appl. Phys. Lett., vol. 71, pp. 1688, 1997.

    CAS  Article  Google Scholar 

  7. [7]

    J. C. Sturm, P. V. Schwartz, E. J. Prinz, and H. Manoharan, J. Vac. Sci. Tech. B, vol. 9, pp. 2011, 1991.

    CAS  Article  Google Scholar 

  8. [8]

    W. J. Taylor, W. Y. Tan, and U. Goesele, Appl. Phys. Lett., vol. 62, pp. 2336, 1995.

    Google Scholar 

  9. [9]

    F. Shimura, R. S. Hocket, D. A. Reed, and D. H. Wayne, Appl. Phys. Lett., vol. 47, pp. 794, 1985.

    CAS  Article  Google Scholar 

  10. [10]

    P. Warren, J. Mi, F. Overney, and M. Dutoit, J. of Crystal Growth, vol. 157, pp. 414–419, 1995.

    CAS  Article  Google Scholar 

  11. [11]

    J. W. Strane, H. J. Stein, S. R. Lee, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, J. Appl. Phys., vol. 76, pp. 3656, 1994.

    CAS  Article  Google Scholar 

  12. [12]

    G. G. Fischer, P. Zaumseil, E. Bugeil, and J. Osten, J. Appl. Phys., vol. 77, pp. 1934, 1995.

    CAS  Article  Google Scholar 

  13. [13]

    L. V. Kulik, D. A. Hits, M. W. Dashiell, J. Kolodzey, Appl. Phys. Lett., vol. 72, pp. 1972, 1998

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. S. Carroll.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carroll, M.S., Sturm, J.C., Napolitani, E. et al. Thermal Stability and Substitutional Carbon Incorporation far above Solid-Solubility in Si1-xCx and Si1-x-yGexCy Layers Grown by Chemical Vapor Deposition using Disilane. MRS Online Proceedings Library 717, 43 (2002). https://doi.org/10.1557/PROC-717-C4.3

Download citation