Study of the Effects of a Two-Step Anneal on the End of Range Defects in Silicon

Abstract

Transient enhanced diffusion (TED) is a challenge that the semi-conductor industry has been faced with for more than two decades. Numerous investigations have been conducted to better understand the mechanisms that govern this phenomenon, so that scale down can be acheived. {311} type defects and dislocation loops are known interstitial sources that drive TED and dopants such as B utilize these interstitials to diffuse throughout the Si lattice. It has been reported that a two-step anneal on Ge preamorphized Si with ultra-low energy B implants has resulted in shallower junction depths. This study examines whether the pre-anneal step has a measurable effect on the end of range defects. Si wafers were preamorphized with Ge at 10, 12, 15, 20 and 30keV at a dose of 1×1015cm-2 and subsequently implanted with 1x1015cm-2 1keV B. Furnace anneals were performed at 450, 550, 650 and 750°C; the samples were then subjected to a spike RTA at 950°C. The implant damage was analyzed using Quantitative Transmission Electron Microscopy (QTEM). At the low energy Ge preamorphization, little damage is observed. However at the higher energies the microstructure is populated with extended defects. The defects evolve into elongated loops as the preanneal temperature increases. Both the extended defect density and the trapped interstitial concentration peak at a preanneal temperature of 550°C, suggesting that this may be an optimal condition for trapping interstitials.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. Lampin, V. Senez, A. Claverie, J Appl. Phys. 1999, 85 (12): 8137

    CAS  Article  Google Scholar 

  2. 2.

    P.M. Fahey, P. B. Griffin, J.D. Plummer, Re. Mod. Phys. 1989, 61: 289

    CAS  Article  Google Scholar 

  3. 3.

    M. C. Ozturk, J.J. Wortman, C.M. Osburn, A. Ajmera, G.A. Rozgonyi, E. Frey, W. Chu, C. Lee, IEEE Transactions on Electron Devices. 1988, 35 (5): 659–667

    CAS  Article  Google Scholar 

  4. 4.

    A.C. Ajmera, G.A. Rozgonyi, Appl. Phys. Lett. 1986, 49(19): 1269–1271

    CAS  Article  Google Scholar 

  5. 5.

    A. F. Gutierrez, Master’s Thesis, Materials Science and Engineering, University of Florida. 2001, 16

    Google Scholar 

  6. 6.

    R. Drosd and J. Washburn, J. Appl. Phys. 1982, 53(1): 397–403

    CAS  Article  Google Scholar 

  7. 7.

    D. J. Eaglesham, P.A. Stolk, H.J. Grossman, J.M. Poate, Appl. Phy. Lett. 1994, 65 (18): 2305

    CAS  Article  Google Scholar 

  8. 8.

    C. Bonafos, D. Mathiot and A. Claverie, J. Appl. Phys. 1998, 83: 3008

    CAS  Article  Google Scholar 

  9. 9.

    K.S. Jones, L.H. Zhang, V. Krishnamoorthy, M. Law, D.S. Simons, P. Chi, L. Rubin and R.G. Elliman, Appl. Phy. Lett. 1996, 68: 2672

    CAS  Article  Google Scholar 

  10. 10.

    S. Libertino, S. Coffa, J.L. Benton, K. Halliburton, D.J. Eaglesham, Nuc. Ins. Met. Phys. Res. B, 1999, 148: 247

    CAS  Article  Google Scholar 

  11. 11.

    S. Coffa, S. Libertino, C. Spinella, Appl. Phys. Lett. 2000, 76(3): 321

    CAS  Article  Google Scholar 

  12. 12.

    J.L. Benton, K. Halliburton, S. Libertino, D.J. Eaglesham, J. Appl. Phys. 1998, 84(9): 4749

    CAS  Article  Google Scholar 

  13. 13.

    L.H. Zhang, K.S. Jones, P.H. Chi, D.S. Simmons, Appl. Phy. Lett. 1995, 67: 2025

    CAS  Article  Google Scholar 

  14. 14.

    J.L. Benton, S. Libertino, D.J. Eaglesham, S. Coffa, Mat. Res. Soc. Symp. Proc., 1997, 469: 193

    CAS  Article  Google Scholar 

  15. 15.

    M. Volmer and A. Weber, J. Phys. Chem. 1926, 119: 227

    Google Scholar 

  16. 16.

    G. Thomas, M.J. Goringe, Transmission Electron Microscopy of Materials, John Wiley & Sons. 1979

    Google Scholar 

  17. 17.

    M.H. Loretto, Electron Beam Analysis of Materials, Chapman & Hall, London. 1984

    Google Scholar 

  18. 18.

    S. Bharatan, J. Desrouches, K.S. Jones, Materials and Process Characterization of Ion Implantation, Ion Beam Press. 1997. Chp.4: 222–243

    Google Scholar 

  19. 19.

    C. Jasper, A. Hoover, K.S. Jones, Appl. Phy. Lett. 1999, 79(17): 2629

    Article  Google Scholar 

  20. 20.

    N.E.B. Cowern, G. Mannino, P.A. Stolk, F. Rooseboom, H.G.A. Huizing, J.G.M. van Berkum, F. Cristiano, A. Claverie and M. Jariaz, Phys. Rev. Lett. 1999, 82: 4460

    CAS  Article  Google Scholar 

  21. 21.

    A. Claverie, L.F. Giles, M. Omri, B. de Mauduit, G. Ben Assayag and D. Mathiot, MRS Proceedings 1998, J 1.1

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Renata A. Camillo-Castillo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Camillo-Castillo, R.A., Jones, K.S., Law, M.E. et al. Study of the Effects of a Two-Step Anneal on the End of Range Defects in Silicon. MRS Online Proceedings Library 717, 14 (2002). https://doi.org/10.1557/PROC-717-C1.4

Download citation