In Situ Isotopic Analysis of Uraninite Microstructures from the Oklo-Okélobondo Natural Fission Reactors, Gabon

Abstract

Uranium deposits can provide important information on the long-term performance of radioactive waste forms because uraninite (UO2+X) is similar to the UO2 in spent nuclear fuel. The Oklo-Okélobondo U-deposits, Gabon, serve as natural laboratory where the long-term (hundreds to billions of years) migration of uranium and other radionuclides can be studied over large spatial scales (nm to km). The natural fission reactors associated with the Oklo- Okélobondo U-deposits occur over a range of depths (100 to 400 m) and provide a unique opportunity to study the behavior of uraninite in near surface oxidizing environments versus more reducing conditions at depth. Previously, it has been difficult to constrain the timing of interaction between U-rich minerals and post-depositional fluids. These problems are magnified because uraninite is susceptible to alteration, it continuously self-anneals radiation damage, and because these processes are manifested at the nm to μm scale. Uranium, lead and oxygen isotopes can be used to study fluid-uraninite interaction, provided that the analyses are obtained on the micro-scale. Secondary ionization mass spectrometry (SIMS) permits in situ measurement of isotopic ratios with a spatial resolution on the scale of a few μm. Preliminary U-Pb results show that uraninite from all reactor zones are highly discordant with ages aaproaching the timing of fission chain reactions (1945±50 Ma) and resetting events at 1180±47 Ma and 898±46 Ma. Oxygen isotopic analyses show that uraninite from reactors that occur in near surface environments (δ18O= −14.4‰ to −8.5‰) have reacted more extensively with groundwater of meteoric origin relative to reactors located at greater depths (μ18O= −10.2‰ to −7.3‰). This study emphasizes the importance of using in situ high spatial resolution analysis techniques for natural analogue studies.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Janeczek, R.C. Ewing, V.M. Oversby, L.O. Werme, J. NUCL. MATER. 238: 21–130 (1996).

    Article  Google Scholar 

  2. 2.

    P. Holliger, 8th Internat. Sims Conf. Proc., 719–722 (1991).

    Google Scholar 

  3. 3.

    F. Gauthier-Lafaye, P. Holliger, P.L. Blanc, Geochim. Cosmochim. 60, 4831–4852 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    M. Fayek, T.K. Kyser, Can. Min. 35, 627–658 (1997).

    CAS  Google Scholar 

  5. 5.

    M. Fayek, T.K. Kyser, Geochim. Cosmochim. 64, 2185–2197 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    M. Fayek et al., Inter. Geol. Rev. 42–2, 163–171 (2000).

    Article  Google Scholar 

  7. 7.

    M. Fayek et al., Chem Geol., in press (2001).

    Google Scholar 

  8. 8.

    K.A. Jensen, R.C. Ewing, Nuclear Science and Technology Eur 19116 EN, 61–91 (2000).

    Google Scholar 

  9. 9.

    K.A. Jensen, R.C. Ewing, Gsa Bulletin 113, 32–62 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    J.W. Valley et al., Soc. Econ. Geol. Rev. 7 (1997).

  11. 11.

    P. Holliger, M. Cathelineau, Chem. Geol. 70: 173 (1988).

    Article  Google Scholar 

  12. 12.

    M. Cathelineau, M.C. Boiron, P. Holliger, B. Poty, Tectonophyscics 177, 55–79 (1990).

    Google Scholar 

  13. 13.

    Gauthier-F. Lafaye, F. Weber, Econ. Geol. 84, 2267–2285 (1989).

    Article  Google Scholar 

  14. 14.

    J. Parnell, Min Mag 60, 581–593 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    R. Naudet, Interdisciplinary Science Reviews 1, (Heyden & Son. London, United Kingdom, 1976), pp. 72–84.

    CAS  Article  Google Scholar 

  16. 16.

    R. Bros, Earth. Planet. Sci. Lett. 113, 207–218 (1992).

    CAS  Article  Google Scholar 

  17. 17.

    V. Michaud, R. Mathieu, Tech. Rep. No. 98/176 (Commissariat a L’energie Atomique/Dcc/Desd/Sesd, France, 1998).

  18. 18.

    V. Sere, thesis, Universite De Paris VII (1996).

    Google Scholar 

  19. 19.

    D. Louvat, V. Michaud, H. von Maravic, Nuclear Science and Technology Eur 19137 EN, 427p (1999).

    Google Scholar 

  20. 20.

    L. Pourcelot, F. Gauthier-Lafaye, Nuclear Science and Technology Eur 19116 EN, 93–105 (1998).

    Google Scholar 

  21. 21.

    D. Louvat, P. Toulhaut, J. Smellie, Contract Cce N F12W-CT 91–0071 (Commissariat a L’Energie Atomique/IPSN, France, 1995).

    Google Scholar 

  22. 22.

    Ludwig, Usgs, Open File Rep. 91–445, 1–42 (1993).

    Google Scholar 

  23. 23.

    L.Z. Evins, J. African Earth Sci., submitted.

  24. 24.

    L.Z. Evins, Chem. Geol., submitted.

  25. 25.

    J. Rogers Geology 104, 91–107 (1996).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mostafa Fayek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fayek, M., Jensen, K.A., Ewing, R.C. et al. In Situ Isotopic Analysis of Uraninite Microstructures from the Oklo-Okélobondo Natural Fission Reactors, Gabon. MRS Online Proceedings Library 713, 85 (2001). https://doi.org/10.1557/PROC-713-JJ8.5

Download citation