Near-Interface Structure and Mobility of Polymeric Chains in Polymer-Based Nanocomposites


The effect of a curved solid wall on the conformations of long, flexible polymer chains is studied in a dense polymer system and in the athermal limit by means of lattice Monte Carlo simulations. It is found that the wall does not perturb the atom number density, which is constant throughout the volume of the polymer, however the chain end density is higher at the wall compared to the bulk. The segregation effect decreases with increasing wall curvature. The bonds are preferentially oriented in the direction tangential to the wall over a two-bond thick layer next to the wall. When probing the preferential orientation on the chain segment length scale, the perturbed region has a thickness on the order of the probing metric considered. The chain mobility is evaluated by computing the bead diffusion coefficient in the direction perpendicular and tangential to the curved wall, and as a function of the distance from the interface. The bead mobility is reduced in a two-bond-thick layer in the vicinity of the wall in both the normal and tangential directions, the reduction being more pronounced in the normal direction. The mobility is seen to decrease with increasing wall curvature. The reduction is most pronounced when the particle size becomes smaller than the chain radius of gyration in the bulk, situation in which the average chain surrounds the particle, which hence becomes an effective entanglement site for the chains. This explains in part the increased strength of polymer-based nanocomposites with small fillers.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Stamm, Adv. Poly. Sci. 100, 357 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    B. J. Factor, T. P. Russel, M. F. Toney, Macromolecules 26, 2847 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    J. A. Forrest, K. D. Veress, J. R. Stevens, J. R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    S. Sen, J. M. Cohen, J. D. McCoy, J. G. Curro, J. Chem. Phys. 101, 9010 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    D. N. Theodorou, Macromolecules 21, 1391 (1988).

    CAS  Article  Google Scholar 

  6. 6.

    P. G. de Gennes, Adv. Colloid Interf. Sci. 27, 189 (1987).

    Article  Google Scholar 

  7. 7.

    Y. Zhan, W. L. Mattice, Macromolecules 27, 7056 (1994).

    CAS  Article  Google Scholar 

  8. 8.

    K. F. Mansfield, D. N. Theodorou, Macromolecules 24, 6283 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    S. K. Kumar, M. Vacatello, D. Y. Yoon, Macromolecules 23, 2189 (1990).

    CAS  Article  Google Scholar 

  10. 10.

    Z. S. Petrovic, I. Javni, A. Waddon, Proceedings of ANTEC 2390 (1998).

    Google Scholar 

  11. 11.

    C. Ng, L. S. Schadler, R. W. Siegel, J. Nanostruct. Mat. 12, 507 (1999).

    Article  Google Scholar 

  12. 12.

    T. Kajiyama, K. Tanaka, A. Takahara, Macromolecules 30, 280 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    T. Pakula, J. Chem. Phys. 95, 4685 (1991).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Catalin R. Picu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Picu, C.R., Ozmusul, M.S. Near-Interface Structure and Mobility of Polymeric Chains in Polymer-Based Nanocomposites. MRS Online Proceedings Library 710, 651 (2001).

Download citation