Film Thickness Effects on Interfacial Fracture of Epoxy Bonds


Nanoindentation test techniques were combined with deposition of highly stressed overlayers to study the interfacial fracture susceptibility of spin coated Epon 828/T403 on aluminized glass substrates as a function of film thickness. The test techniques required to induce fracture differed between samples. Nevertheless, the resulting interfacial fracture energies decreased monotonically with film thickness to a value near 0.5 J/m2. This value is higher than the ‘true work of adhesion’ for uncured epoxy oliogomers on a methyl-terminated aluminum surface. However, it may indicate that we have irreversible specific interactions such as hydrogen bonding. Then 0.5 J/m2 may be near the fundamental value for such an interaction, or the ‘practical work of adhesion’.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. S. Kent, E. D. Reedy, and M. J. Stevens, Molecular-to-Continuum Fracture Analysis of Thermosetting Polymer/Solid Interfaces, Sandia Report SAND2000-0026 (2000).

  2. 2.

    Wei and J. W. Hutchinson, Int’l. Journal of Fracture, 9, 315 (1998).

    Google Scholar 

  3. 3.

    A. Bagchi and A. G. Evans, Thin Solid Films, 286, 203 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    A. Bagchi, G. E. Lucas, Z. Suo, and A. G. Evans, J. Mater. Res., 9, 1734 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    M. D. Kriese, W. W. Gerberich, and N. R. Moody, J. Mater. Res., 14, 3007 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    M. D. Kriese, N. R. Moody, and W. W. Gerberich, Acta mater., 46, 6623 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    A. V. Zhuk, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, J. Mater. Res., 13, 3555 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    D. M. Marsh, Proc. Roy. Soc. A, 279, 420 (1963).

    Google Scholar 

  9. 9.

    N. R. Moody, D. F. Bahr, M. S. Kent, J. A. Emerson, E. D. Reedy Jr, in Fundamentals of Nanoindentation and Nanotribology II, edited by R. F. Cook, S. P. Baker, S.G. Corcoran, and N. R. Moody, (Mater. Res. Soc. Proc., 649, Pittsburgh, PA, 2001) pp.Q6.3.1–6.

    Google Scholar 

  10. 10.

    J. G. Swadener, K. M. Liechti, and A. L. de Lozanne, J. Mech. Phys. Solids, 47, 223 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    R. K. Agrawal and L. T. Drzal, J. Adhesion, 54, (1995) p.79–102.

    CAS  Article  Google Scholar 

  12. 12.

    R. K. Agrawal and L. T. Drzal, J. Adhesion Sci. Tech., 9, 1381 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    J. W. Hutchinson and Z. Suo, in Advances in Applied Mechanics, edited by J. W. Hutchinson and T. Y.

  14. 14.

    D. B. Marshall and A. G. Evans, J. Appl. Phys., 56, 2632 (1984).

    CAS  Article  Google Scholar 

  15. 15.

    A. G. Evans and J. W. Hutchinson, Int. J. Solids Struct., 20, 455 (1984).

    Article  Google Scholar 

  16. 16.

    A. Strojny, N. R. Moody, J. A. Emerson, W. W. in Polymer Systems, S. H. Anastasiadis, A. Karim, G. S. Ferguson, eds., (Mater. Res. Soc. Proc, 629, Pittsburgh, PA, 2000) p.F5.13.1–6.

    Google Scholar 

  17. 17.

    M. D. Thouless, Acta Metall., 36, 3131 (1988).

    CAS  Article  Google Scholar 

  18. 18.

    J. E. Ritter, T. J. Lardner, L. Rosenfeld, and M. R. Lin, J. Appl. Phys., 66, 3626 (1989).

    CAS  Article  Google Scholar 

  19. 19.

    L. G. Rosenfeld, J. E. Ritter, T. J. Lardner, and M. R. Lin, J. Appl. Phys., 67, 3291 (1990).

    Article  Google Scholar 

  20. 20.

    Z. Suo and J. W. Hutchinson, Mater. Sci. Engng., A107, 135 (1989).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. R. Moody.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moody, N.R., Bahr, D.F., Kent, M.S. et al. Film Thickness Effects on Interfacial Fracture of Epoxy Bonds. MRS Online Proceedings Library 710, 1061 (2001).

Download citation