Orientational Growth of Carbon Nanotube by Thermal CVD

Abstract

Carbon nanotubes are synthesized using thermal chemical vapor deposition. Various temperature and pressure are used to fabricate carbon nanotubes. It is found that the nanotube-diameter distribution mainly depends on the growth-temperature. With the substrate surface normal either along or against the gravity vector, different growth orientations of multi-walled carbon nanotubes are observed by scanning electron microscopy although the Raman spectra are similar for samples synthesized at different locations. The sizes of these carbon nanotubes in each sample are quite uniform and the length of the tube is up to hundreds of micrometers. These results suggest the gravitation effects in the growth of long and small diameter CNT.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Msu, K. Jare. P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Nature 388, 52 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G-S Park, W. B. Choi, N. S. Lee, and J. M. Kim, Appl. Phys. Lett 76, 2367 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    S. H. Tsai, F. K. Chiang, T. G. Tsai, F. S. Shiew, and H. C. Shih, Thin solid Films 366, 11 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science 274, 1701 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    W. K. Hong, H.C. Shih, S. H. Tsai, C. T. Shu, F. G. Tarntair, and H. C. Cheng, Jpn. J. Appl. Phys. Vol. 39, L925 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Appl. Phys. Lett 74, 644 (1999)

    Article  Google Scholar 

  8. 8.

    J. Kong, A. M. Cassell, and H. Dai, Chem. Phys. Lett. 292, 567 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G-S Park, W. B. Choi, N. S. Lee, and J. M. Kim, Appl. Phys. Lett 76, 2367 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    J. Wan, Y. H. Luo, Sung D. Choi, R. G. Li, G. Jin, J. L. Liu, and K. L. Wang, J. Appl. Phys. 89, 1973 (2001)

    CAS  Article  Google Scholar 

  11. 11.

    H. Jantoljak, J.-P. Salvetat, L. Forro and C. Thomsen, Appl. Phys. A: Mater. Sci. Process. 67, 113 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, and S. Xie, Appl. Phys. Lett. 70, 2684 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    A. M. Rao, A. Jorio, M. A. Pimenta, M. S. S. Dantas, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 84, 1820 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter and P. C. Eklund, Phys. Rev. Lett. 80, 3779 (1998).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shen Zhu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, S., Su, CH., Cochrane, J.C. et al. Orientational Growth of Carbon Nanotube by Thermal CVD. MRS Online Proceedings Library 706, 3211 (2001). https://doi.org/10.1557/PROC-706-Z3.21.1

Download citation