Boron Nitride Nanotube, Nanocable and Nanocone

Abstract

Boron nitride nanotubes, nanocones and nanocables were prepared and their atomic structures were identified by using a 300 kV field emission transmission electron microscope equipped with an electron energy loss spectrometer and energy dispersion X-ray detector. Multiwalled BN nanotubes and nanocones were synthesized by reacting C nanotube templates and boron oxide under nitrogen atmosphere at 1723-2023 K. Additions of metal oxide promoters, e.g. MoO3, CuO, and PbO, significantly improved BN-rich nanotube yield at the expense of B-C-N nanotubes. It was shown that BN nanotubes had preferential “zigzag” chirality and exhibited either hexagonal or rhombohedral stacking between shells. An efficient synthetic route for bulk quantities of BN tube production was also developed, where a B-N-O precursor was used during a CVD process. Nanocones of BN were mostly found to have 240° disclinations which ensure the presence of B-N bonds only. One case was observed of a cone constituted of 300° disclination implying that structures may contain line defects of non B-N bonds. The first synthesis of insulating BN nanocables was carried out, where BN nanotubes were entirely filled with Invar Fe-Ni nanorods. The filled nanotube diameters ranged between 30 to 300 nm, whereas the length of filling reached several microns.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M. L. Cohen, S.G. Louie, and A. Zettl, Science 269, 966 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    M. Terrones et al. Chem. Phys. Lett. 259, 568 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, and H. Yusa, Appl. Phys. Lett. 69, 2045 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    J. Cumings, and A. Zettl, Chem. Phys. Lett. 316, 211 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    E. Bengu, and L.D. Marks, Phys. Rev. Lett. 86, 2385 (2000).

    Article  Google Scholar 

  7. 7.

    L. Bourgeois, Y. Bando, K. Kurashima, and T. Sato, Phil. Mag. A80, 129 (2000).

    Article  Google Scholar 

  8. 8.

    K. Shelimov and M. Moscovits, Chem. Mater. 12, 250 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Bando, K. Ogawa, and D. Golberg, Chem. Phys. Lett. 347, 349 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Scripta Mater. 44, 1561 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    S. Iijima, Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  12. 12.

    H. Haanstra, W. Knippenberg, and G. Verspui, J. Crys. Growth 16, 71 (1972).

    CAS  Article  Google Scholar 

  13. 13.

    P.M. Ajayan and S. Iijima, Nature 361, 333 (1993).

    CAS  Article  Google Scholar 

  14. 14.

    M. Menon, D. Srivastava, Chem. Phys. Lett. 307, 407 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    D. Golberg, W. Han, Y. Bando, L. Bourgeois, K. Kurashima, and T. Sato, J. Appl. Phys. 86, 2364 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    D. Golberg, Y. Bando, K. Kurashima, T. Sato, Chem. Phys. Lett. 323, 185 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    D. Golberg, Y. Bando, K. Kurashima, T. Sato, Sol. St. Comm. 116, 1 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Appl. Phys. Lett. 77, 1979 (2000) 1979.

    CAS  Article  Google Scholar 

  19. 19.

    D. Golberg, Y. Bando, Appl. Phys. Lett. 79, 415 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino, K. Kimura, Chem. Phys. Lett. 324, 359 (2000) 359.

    CAS  Article  Google Scholar 

  21. 21.

    B.G. Demczyk, J. Cumings, A. Zettl, R.O. Ritchie, Appl. Phys. Lett. 78, 2772 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    R. Ma, Y. Bando, T. Sato, and K. Kurasima, Chem. Mater. 13, 2965 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    L. Bourgeois, Y. Bando, and Y. Sato, J. Phys. D: Appl. Phys. 33, 1902 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    S. Amelinckx, W. Luyten, T. Krekels, G. Van Tendeloo, and J. Van Landuyt, J. Cryst. Growth 121, 543 (1992).

    Google Scholar 

  25. 25.

    J.W.G. Wildoer, L.C. Venema, A.C. Rinzler, R.E. Smalley, C. Dekker, Nature 391, 59 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 28, 335 (1994).

    CAS  Article  Google Scholar 

  27. 27.

    E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki, Science 265, 1850 (1994).

    CAS  Article  Google Scholar 

  28. 28.

    S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature 372, 159 (1994).

    CAS  Article  Google Scholar 

  29. 29.

    W. Han, Y. Bando, K. Kurashima, T. Sato, Appl. Phys. Lett. 73, 3085 (1998).

    CAS  Article  Google Scholar 

  30. 30.

    R. Ma, Y. Bando, and T. Sato, Chem. Phys. Lett. 337, 61 (2000).

    Article  Google Scholar 

  31. 31.

    C.C. Ahn, O.L. Krivanec, R.P. Burgner, M.M. Disco, and P.R. Swann, in “EELS Atlas” (a Joint Project of Arizona State Univ. HREM Facility and Gatan Inc. USA, 1993) p. 8.

    Google Scholar 

  32. 32.

    O. Mishima and K. Era, in “Science and Technology of Boron Nitride”, ed. Y. Kumashiro (Marcel Dekker, Inc. the Netherlands, 2000) p. 514.

    Google Scholar 

  33. 33.

    D.V. Stansky, O. Tsuda, Y. Ikuhara, and T. Yoshida, Proc. 56 Conf. of the Japanese Soc. Electon Microscopy, Tokyo, 2000, 35, Suppl.1, p. 90.

    Google Scholar 

  34. 34.

    I. Petrusha, personal communication.

  35. 35.

    O. Louchev, and Y. Sato, Appl. Phys. Lett. 74, 194 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    X. Blase, J.-Ch. Charlier, A. DeVita, R. Car, Appl. Phys. A68, 293 (1999).

    Article  Google Scholar 

  37. 37.

    E. Hornbogen, “Physical Metallurgy of Steels”, Physical Metallurgy, ed. R.W. Cahn and P. Haasen, Part II (North-Holland Phys. Publishers, 1983) p. 1131.

    Google Scholar 

  38. 38.

    L. Bourgeois, Y. Bando, W. Han, and T. Sato, Phys. Rev. B61, 7686 (2000).

    Article  Google Scholar 

  39. 39.

    M. Ge and K. Sattler, Chem. Phys. Lett. 220, 192 (1994). Z2.3.10

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitri Golberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Golberg, D., Bando, Y., Bourgeois, L. et al. Boron Nitride Nanotube, Nanocable and Nanocone. MRS Online Proceedings Library 706, 231 (2001). https://doi.org/10.1557/PROC-706-Z2.3.1

Download citation