MRS 2001 (Boston): Design and Quantification of a Nanoscale Field Effect Transistor: Distributed Response Analysis for Investigating Conductive Behaviour.

Abstract

A new design for a field effect transistor able to push back the physical limits of Moore’s Law is described. An ab initio computational approach is presented that can be further developed to characterize the ON/OFF states of such a device. Distributed response analysis (M. in het Panhuis, P.L.A. Popelier, R.W. Munn, J.G. Ágyán (2001), J. Chem. Phys. 114, 7951-7961) is employed to investigate conductive behavior. The method demonstrates that in analogy to conduction an electron can move across a possible conjugated molecular switching element (para-nitroaniline) in an electric field.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    See http://www.intel.com/research/silicon

  2. [2]

    R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy and G. Dewey, Proceedings of IEEE 88, 15 (2000).

    Google Scholar 

  3. [3]

    M.A. Reed and J.M. Tour, Sci. Am. 286, 86 (2000).

    Article  Google Scholar 

  4. [4]

    M.A. Reed (2001), MRS Bulletin 26, 113 (2000).

    CAS  Article  Google Scholar 

  5. [5]

    J.M. Tour, Acc. Chem. Res. 33, 791 (2000).

    CAS  Article  Google Scholar 

  6. [6]

    C. Joachim, J.K. Gimzewski and A. Aviram, Nature 408, 541 (2000).

    CAS  Article  Google Scholar 

  7. [7]

    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung and C.M. Lieber, Science 289, 94 (2000).

    CAS  Article  Google Scholar 

  8. [8]

    A. Aviram and M.A. Ratner, Chem. Phys. Letters 29, 277 (1974).

    CAS  Article  Google Scholar 

  9. [9]

    C. Kergueris, J.P. Bourgoin, S. Palacin, D. Estève, C. Urbina, M. Magoga and C. Joachim, Phys. Rev. B 59, 12505 (1999).

    CAS  Article  Google Scholar 

  10. [10]

    S.N. Yaliraki, A.E. Roitberg, C. Gonzalez, V. Mujica and M.A. Ratner, J. Chem. Phys. 111, 6997 (1999).

    CAS  Article  Google Scholar 

  11. [11]

    L.E. Hall, J.R. Reimers, N.S. Hush and K. Silverbrook, J. Chem. Phys. 112, 1510 (2000).

    CAS  Article  Google Scholar 

  12. [12]

    A.J. Stone, Mol. Phys. 56, 1065 (1985).

    CAS  Article  Google Scholar 

  13. [13]

    H. Reis, M.G. Papadopoulos, C. Hättig, J. Ángyán and R.W. Munn, J. Chem. Phys. 112, 6161 (2000).

    CAS  Article  Google Scholar 

  14. [14]

    J. Ángyán, G. Jensen, M. Loos, C. Hättig and B.A. Heß, Chem. Phys. Letters 219, 267 (1994).

    Article  Google Scholar 

  15. [15]

    M. in het Panhuis, P.L.A. Popelier, R.W. Munn and J. Ángyán, J. Chem. Phys. 114, 7951 (2001).

    Article  Google Scholar 

  16. [16]

    M. in het Panhuis, S. O’Flaherty, P.L.A. Popelier, R.W. Munn and W.J. Blau, in preparation.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marc Panhuis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Panhuis, M., Coleman, J.N., Popelier, P.A. et al. MRS 2001 (Boston): Design and Quantification of a Nanoscale Field Effect Transistor: Distributed Response Analysis for Investigating Conductive Behaviour.. MRS Online Proceedings Library 706, 1161 (2001). https://doi.org/10.1557/PROC-706-Z11.6.1

Download citation