Thermoelectric Study of Hydrogen Storage in Carbon Nanotubes

Abstract

In situ resistivity and thermoelectric power (S) have been used to study the nature of the adsorption of hydrogen in bundles of single-walled carbon nanotubes for H2 pressure P <1 atm and temperatures 77 K<T<500 K. Isothermal plots of S vs. Δρ/ρ0 are found to exhibit linear behavior as a function of gas coverage, consistent with a physisorption process. Studies of S, ρ at T = 500 K as a function of pressure exhibit a plateau at a pressure P~40 Torr, the same pressure where the H % measurements suggest the highest binding energy sites are being saturated. The effects of H2 exposure at 500 K on the thermoelectric transport properties are fully reversible.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, (Academic Press, San Diego, CA, 1996)

    Google Scholar 

  2. 2.

    R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, (Imperial College Press, Singapore, 1998)

    Google Scholar 

  3. 3.

    K. Tanaka, T. Yamabe, K. Fukui, The Science and Technology of Carbon Nanotubes, Elsevier, Oxford, 1999)

    Google Scholar 

  4. 4.

    M. S. Dresselhaus, K. A. Williams, P. C. Eklund, Bull. of the Mat. Res. Soc., 11, 45 (1999)

    Article  Google Scholar 

  5. 5.

    A. M. Rao et al., Science, 275, 187 (1997)

    CAS  Article  Google Scholar 

  6. 6.

    B. K. Pradhan et al., in preparation

  7. 7.

    G. U. Sumanasekera, L. Grigorian and P. C. Eklund, Meas. Sci. Technol., 11, 273 (2000)

    CAS  Article  Google Scholar 

  8. 8.

    P. C. Eklund and A. K. Mubatha, Rev. Sci. Instrum., 66, 3680

  9. 9.

    P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science, 287, 1801 (2000)

    CAS  Article  Google Scholar 

  10. 10.

    G. U. Sumanasekera, C. A. K. Adu, S. Fang, and P. C. Eklund, Phys. Rev. Lett., 85, 1096 (2000)

    CAS  Article  Google Scholar 

  11. 11.

    K. A. Williams, P. C. Eklund, Chem. Phys. Lett., 320, 352 (2000)

    CAS  Article  Google Scholar 

  12. 12.

    G. Stan, M. W. Cole, J. Low Temp. Phys., 110, 539 (1998)

    CAS  Article  Google Scholar 

  13. 13.

    R. D. Barnard, Thermoelectricity in Metals and Alloys, John Wiley & Sons, New York, (1972)

    Google Scholar 

  14. 14.

    C. A. W. Adu et al., Chem. Phys. Lett., 337, 29 (2001)

    Article  Google Scholar 

  15. 15.

    S. H. Jhi, S. G. Louie, M. L. Cohen, Phys. Rev. Lett., 85, 1710 (2000)

    CAS  Article  Google Scholar 

  16. 16.

    T. Kostyrko, M. Bartkowiak, and G. D. Mahan, Phys. Rev. B., 59, 3241 (1999)

    CAS  Article  Google Scholar 

  17. 17.

    J. Kong et al., Science, 287, 622 (2000)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. U. Sumanasekera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sumanasekera, G.U., Adu, C.K.W., Pradhan, B.K. et al. Thermoelectric Study of Hydrogen Storage in Carbon Nanotubes. MRS Online Proceedings Library 706, 1041 (2001). https://doi.org/10.1557/PROC-706-Z10.4.1

Download citation