Controlling the Microstructure and Magnetic Properties of Ferromagnetic Nanocrystals Produced by Ion Implantation

Abstract

Ion implantation coupled with annealing is a versatile and flexible approach to creating ferromagnetic near-surface nanocomposites that represent a wide range of particle/host combinations. We have used ion implantation and thermal processing to create a layer of Co nanoparticles in a sapphire host that was subsequently irradiated with Xe, Pt, or Pb in order to systematically modify the magnetic properties of the composite. Transmission electron microscopy (reported in an accompanying paper in this volume) was used to carry out a detailed characterization of the microstructure of the resulting near-surface composites whose magnetic properties were determined using SQUID magnetometry or magnetic circular dichroism. These composites exhibit magnetic hysteresis with coercivities ranging from near zero (i.e., superparamagnetism) up to 1.2 kG - depending on the composition and microstructure. We also present the results of preliminary experiments in which we attempt to control the spatial distribution of magnetic elements within ion-implanted ferromagnetic nanocomposites. The results demonstrate methods for tailoring the magnetic properties of nanocomposites produced by ion implantation for specific applications.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. W. White, C. J. McHargue, P. S. Sklad, L. A. Boatner, and G. C. Farlow, Materials Science Reports 4, 41–146 (1989). For a recent review see

    CAS  Article  Google Scholar 

  2. 1a.

    A. Meldrum, R.F. Haglund, L.A. Boatner, and C.W. White, Adv. Mater. 13, 1431 (2001).

    CAS  Article  Google Scholar 

  3. 2.

    D.N. Lambeth, E.M.T. Velu, G.H. Bellesis, L.L. Lee, and D.E. Laughlin, J. Appl. Phys. 79 (1996) 4496.

    CAS  Article  Google Scholar 

  4. 3.

    S. Honda, F. A. Modine, T.E. Haynes, A. Meldrum, J.D. Budai, K. J. Song, J.R. Thompson, and L.A. Boatner, Mat. Res. Symp. Proc. 581, 71–76 (2000).

    CAS  Article  Google Scholar 

  5. 4.

    S. Honda, F.A. Modine, A. Meldrum, J.D. Budai, T.E. Haynes, L.A. Boatner, and L.A. Gea, Mat. Res. Symp. Proc 540, 225–230 (1999).

    CAS  Article  Google Scholar 

  6. 5.

    T.C. Schulthess, M. Benakli, P.B. Visscher, K.D. Sorge, J.R. Thompson, F.A. Modine, T.E. Haynes, L.A. Boatner, G.M. Stocks, W.H. Butler, J. Appl. Phys. 89, 7594 (2001).

    CAS  Article  Google Scholar 

  7. 6.

    A. Meldrum, K.S. Beaty, M. Lam, C.W. White, R.A. Zuhr, and L.A. Boatner (these proceedings).

  8. 7.

    N.M. Dempsey, X.L. Rao, J.M.D. Coey, J.P. Nozieres, M. Ghidini, B. Gervais, J. Appl. Phys. 83, 6902 (1998).

    CAS  Article  Google Scholar 

  9. 8.

    W. J. Weber, Nucl. Instr. Meth. 166, 98 (2000).

    Article  Google Scholar 

  10. 9.

    J. W. Mayer, L. Eriksson, and J. A. Davies, Ion Implantation in Semiconductors Academic Press, New York (1970).

    Google Scholar 

  11. 10.

    C. Chappert, H. Bernas, J. Ferre, V. Kottler, J.-P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, H. Lanois, Science 280, 1919 (1998).

    CAS  Article  Google Scholar 

  12. 11.

    S. Honda, F. A. Modine, A. Meldrum, J.D. Budai, T. E. Hayes, and L. A. Boatner, Appl. Phys. Let. 77, 711 (2000).

    CAS  Article  Google Scholar 

  13. 12.

    E. Alves, C. MacHargue, R. C. Silva, C. Jesus, O. Conde, M.F. da Silva, and J. C. Soares, Surf. Coat. Tech. 128-129, 434 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. S. Beaty.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beaty, K.S., Meldrum, A., Franck, J.P. et al. Controlling the Microstructure and Magnetic Properties of Ferromagnetic Nanocrystals Produced by Ion Implantation. MRS Online Proceedings Library 703, 94 (2001). https://doi.org/10.1557/PROC-703-V9.4

Download citation