Fluorescence from Coated Oxide Nanoparticles

Abstract

In many cases, coated nanoparticles behave like isolated ones. Using the microwave plasma process, it is possible to produce oxide nanoparticles with ceramic or polymer coating. Coating the particles has the additional advantage that by proper selection of the coating it is possible to suspend the particles in distilled water without using any colloid stabilizer. From quantum dots made of sulfides or selenides, it is well known from literature that fluorescence depends strongly on the coating of the kernels. In the case of CdSe, the kernels are coated with CdS. Within this study, similar phenomena are found with coated oxide nanoparticles having sizes of ca. 6 nm exhibiting a very narrow particle size distribution. The coating consists of a second ceramic phase or a polymer one, each one influencing fluorescence differently. Obviously, the type of coating is a tool to modify fluorescence. This behavior is demonstrated on kernels made of Al2O3, ZrO2, HfO2, ZnO etc. PMMA, PTFE, or Al2O3 were used as coating material. In most cases, the fluorescence spectra showed broad bands. In some cases, such as ZnO, additionally, a sharp emission line in the UV appears. It is interesting to note that coatings made of fluorine containing polymer materials did not lead to fluorescence intensities comparable with PMMA coatings. The observed spectra are equivalent whether the powder is in aqueous suspensions or dry on a quartz glass carrier. The experimental results in this study indicate that the combination of non-fluorescent oxide core with a non-fluorescent polymer coating may lead to a nanocomposite with strong fluorescence. This is a phenomenon not described in literature until now.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. Soukka, J. Paukkunen, H. Harma, S. Lonnberg, H. Lindroos, T. Lovgren, Clinical Chemistry 47, 1269 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, A. P. Alivsatos, Science 281, 2013 (1998).

    CAS  Article  Google Scholar 

  3. 3.

    D. Gerion et al., J. Phys. Chem. B 105, 8861 (2001).

    Article  Google Scholar 

  4. 4.

    W. C. W. Chan, S. Nie, Science 281, 2016 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    S. Schaertl, F. J. Meyer-Almez, E. Lopez-Calle, A. Siemers, J. Kramer, J. of Biomol. Screening 5, 227 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    J. R. Taylor, M. M. Fang, S. M. Nie, Anal. Chem. 72, 1979 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    I. de Miguel, L. Imbertie, V. Rieumajou, M. Major, R. Kravtzoff, D. Betbederm Pharmaceutical Res. 17, 817 (2000).

    Article  Google Scholar 

  8. 8.

    Y. Tien, T. Newton, N. A. Kotov, D. M. Guldi, J. H. Fendler, J. Phys. Chem. 100, 8927 (1996).

    Article  Google Scholar 

  9. 9.

    H. E. Porteanu, E. Lifshitz, M. Pflughoefft, A. Eychmüller, H. Weller, Phys. Stat. Sol. B 226, 219 (2001).

    Article  Google Scholar 

  10. 10.

    Y. Yang, V. J. Leppert, S. H. Risbud, B. Twamely, P. P. Power, H. W. H. Lee, Appl. Phys. Lett. 74, 2262 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    Y. G. Cao, X. L. Chen, J. Y. Li, Y. C. Lan, J. K. Liang, Appl. Phys. A 71, 229 (2000).

    Google Scholar 

  12. 12.

    P. Yang, M. Lu, D. Xu, D. Yuan, G. Zhou, Appl. Phys. A 73, 455 (2001).

    Article  Google Scholar 

  13. 13.

    F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, M. G. Bawendi, J. Am. Chem. Soc. 122, 2532 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Chen, Y. Cao, Y. Bai, W. Yang, J. Yang, H. Jin, T. Li, J. Vac. Sci. Technol. B 15, 1442 (1997).

    Article  Google Scholar 

  15. 15.

    S. Monticone, R. Tufeu, A. V. Kanaev, J. Phys. Chem. B 102, 2854 (1998).

    Article  Google Scholar 

  16. 16.

    L. Guo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, G. K. L. Wang, Chem. Mater. 12 2268 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Wang, H. Cheng, L. Zhang, Y. Hao, J. Ma, B. Xu, W. Li, J. Mol. Catal. A 151, 205 (2000).

    Article  Google Scholar 

  18. 18.

    D. Vollath, German Patent G9403581.4 (1994).

  19. 19.

    D. Vollath, D. V. Szabó, Nanostr. Mater. 4, 927 (1994).

    CAS  Article  Google Scholar 

  20. 20.

    D. Vollath, D. V. Szabó, B. Seith, German Patent DE19638601C1 (1998).

    Google Scholar 

  21. 21.

    A. Mitra, R. K. Thareja, Modern Phys. Letters B, 13, 1075 (1999)

    CAS  Article  Google Scholar 

  22. 22.

    H. Cao, J. Y. Xu, S.-H. Chang, S. T. Ho, Phys. Rev. E, 61, 1985 (2000)

    CAS  Article  Google Scholar 

  23. 23.

    I. Lamparth, D. V. Szabó, D. Vollath, Macromolecular Symposia, in the print

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Vollath.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vollath, D., Lamparth, I. & Szabó, D.V. Fluorescence from Coated Oxide Nanoparticles. MRS Online Proceedings Library 703, 78 (2001). https://doi.org/10.1557/PROC-703-V7.8

Download citation