Supersonic Nanocrystal Deposition for Nanostructured Materials


We experimentally demonstrate the large scale production and controlled collection of metal and semiconductor nanocrystals by laser ablation of microparticles entrained at high density in a flowing aerosol. For silver, produced nanocrystals exhibit bimodal, log-normal size distributions. Mean particle sizes are controlled from 3-16 nm by varying the type and pressure of carrier gas as well as laser fluence. For collection, a micronozzle orifice (d = 200 [.mu]m) accelerates nanocrystals through a sonic jet into a vacuum chamber for deposition onto a room temperature substrate. We describe two regimes of deposition that depend on the nanocrystal’s energy per atom on impact. Soft landings ( E << 1 eV/ atom) preserve the individual particle properties such as size and shape. Low energy impaction is demonstrated for CdSe in an argon carrier gas. The CdSe nanoclusters remain crystalline upon deposition and display visible photoluminescence. At higher particle impaction velocities (E ∼ 0.3 eV/atom) nanocrystals exhibit the onset of self sintering upon impact. At high number densities, adherent, conductive lines are formed from deposited silver nanocrystals. Line widths of 33 [.mu]m FWHM are directly written onto substrates using a 200 [.mu]m diameter nozzle.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. Jensen, Rev. Mod. Phys., 71, 1695 (1999) and references therein

    CAS  Article  Google Scholar 

  2. 2.

    For a recent review see: P. Milani and S. Iannotta, Cluster beam synthesis of nano-structured materials, Springer, Berlin 1999

    Google Scholar 

  3. 3.

    W.T. Nichols, J.W. Keto, D.E. Henneke, J.R. Brock, G. Malyavanatham, M.F. Becker and H.D. Glicksman, Appl. Phys. Lett. 78, 1128 (2001)

    CAS  Article  Google Scholar 

  4. 4.

    T.G. Dietz, M.A. Duncan, D.E. Powers and R.E. Smalley, J. Chem. Phys. 74, 6511 (1981)

    CAS  Article  Google Scholar 

  5. 5.

    S. Kashu, E. Fuchita, T. Manabe and C. Hayashi, Japn. J. Appl. Phys., 23, L910 (1984)

    Article  Google Scholar 

  6. 6.

    F. Di Fonzo, A. Gidwani, M. Fan, D. Neumann, D. Iordanoglou, J. Heberlein, P. McMurry, S. Girshick, N. Tymiak, W. Gerberich and N.P. Rao, Appl. Phys. Lett. 77, 910 (2000)

    Article  Google Scholar 

  7. 7.

    N.P. Rao, N. Tymiak, J. Blum, A. Neuman, H.J. Lee, S.L. Girshick, P.H. McMurry and J. Heberlein, J. Aerosol Sci., 29, 707 (1998)

    CAS  Article  Google Scholar 

  8. 8.

    W.T. Nichols, G. Malyavanatham, D.E. Henneke, J.R. Brock, M.F. Becker and J.W. Keto and H.D. Glicksman, J. Nanoparticle Res., 2, 141 (2000)

    CAS  Article  Google Scholar 

  9. 9.

    W.T. Nichols, G. Malyavanatham, D.E. Henneke, D.T. O’Brien, M.F. Becker and J.W. Keto, submitted to J. Nanoparticle Res.

  10. 10.

    H. Hsieh, R.S. Averback, H. Sellars and C.P. Flynn, Phys. Rev. B, 45, 4417 (1992)

    CAS  Article  Google Scholar 

  11. 11.

    P.C. Reist, Aerosol Science and Technology, 2nd ed., McGraw-Hill, New York 1993 pp. 82

    Google Scholar 

  12. 12.

    W.T. Nichols, G. Malyavanatham, M.P. Beam, D.E. Henneke, J.R. Brock, M.F. Becker and J.W. Keto, Mat. Res. Soc. Proc. 581, 193 (2000)

    CAS  Article  Google Scholar 

  13. 13.

    E. Barborini, P. Piseri, A. Podesta and P. Milani, Appl. Phys. Lett. 77, 1059 (2000)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to W. T. Nichols.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nichols, W.T., O’Brien, D.T., Malyavanatham, G. et al. Supersonic Nanocrystal Deposition for Nanostructured Materials. MRS Online Proceedings Library 703, 55 (2001).

Download citation