Study of NiFe/SiO2 Nanocomposites


(Ni75Fe25)v/(SiO2)1-v nanocomposites with v =0.5, 0.7, and 1.0, where 75 denotes the atomic percent of Ni in the Ni-Fe alloy phase and v denotes the volume fraction of the magnetic constituent in the composite, were synthesized using a wet chemical approach. The x-ray diffraction and TEM experiments show that the synthetic NiFe/SiO2 is a two-phase composite system in that an amorphous insulating SiO2 layer coats each Ni-Fe particle. The Ni-Fe particle is in a fcc Ni-Fe alloy state. Its size can be controlled over a rather large range between 5 nm to 70 nm by adjusting the reaction parameters. Particular attention was paid to reduce the chemical reaction temperature so as to insure the smallness of the particle size. Meanwhile, measurements of the saturation magnetization indicated that the higher the heat treatment temperature, the more complete the chemical reaction to form the Ni-Fe alloys from precursor materials.

This is a preview of subscription content, access via your institution.


  1. 1.

    A.P. Philipse, P.B. van Bruggen, and C. Pathmamanoharan, Langmuir 10, 92–99 (1994).

    CAS  Article  Google Scholar 

  2. 2.

    K.O. Grady and H. Laidler, J. Magn. Magn. Mater. 200, 616–633 (1999).

    Article  Google Scholar 

  3. 3.

    Q. Liu, Z. Xu, J.A. Finch, and R. Egerton, Chem. Mater. 10, 3936-940 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    L. Nixon, C.A. Koval, R.D. Noble, and G.S. Slaff, Chem. Mater. 4, 117–121 (1992).

    CAS  Article  Google Scholar 

  5. 5.

    G.C. Hadjipanayis, WTEC Workshop Rep. R&D Status Trends Nanopart., Nanostruct. Mater., Nanodevices U. S., Proc., Meeting Date 1997 (International Technology Research Institute, Baltimore, Md, 1998), p. 107–112.

    Google Scholar 

  6. 6.

    H. Fukunaga, Nippon Oyo Jiki Gakkaishi 19 (4), 791-6 (1995).

    CAS  Google Scholar 

  7. 7.

    G.C. Hadjipanayis and G.A. Prinz, Science and Technology of Nanostructures Magnetic Materials (Plunum Press, New York, 1991). p. 477.

    Google Scholar 

  8. 8.

    Y. Hayakawa, A. Makino, H. Fujimori, and A. Inoue, J. Appl. Phys. 81, 3747 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    H. Fujimori, Sripta Met. Mat. 33, 1625 (1995).

    CAS  Article  Google Scholar 

  10. 10(a).

    G.M. Chow and K.E. Gonsalves, Novel Tech. Synth. Process. Adv. Mater., Proc. Symp. (1994), 155-63. Editor(s): J. Singh and S.M. Copley, Minerals, Metals & Materials Society, Warrendale, Pa.

    Google Scholar 

  11. (b)

    R. Monaci, A. Musinu, G. Piccaluga, G. Pinna, Mater. Sci. Forum (1995), 195 (Nanophase Materials), 1–6

    CAS  Article  Google Scholar 

  12. (c)

    D. Niznansky, N. Viart, and J.L. Rehspringer, J. Sol-Gel Sci. Tech. 8, 615–618 (1997).

    CAS  Google Scholar 

  13. 11.

    R.D. Shull and L.H. Bennett, Nanostruct. Mater. 1, 83–88 (1992).

    CAS  Article  Google Scholar 

  14. 12(a).

    A.K. Giri, C. de Julian, J.M. Gonzalez, J. Appl. Phys. 76 (10, Pt. 2), 6573–5 (1994)

    CAS  Article  Google Scholar 

  15. (b)

    M. Pardavi-Horvath and L. Takacs, IEEE Trans. Magn. 28, 3186–3188 (1992).

    CAS  Article  Google Scholar 

  16. 13(a).

    S. Chang, L. Liu, and S.A. Asher, J. Am. Chem. Soc. 116, 6739 (1994); (b) 116, 6745 (1994).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Hui.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hui, S., Zhang, Y.D., Xiao, T.D. et al. Study of NiFe/SiO2 Nanocomposites. MRS Online Proceedings Library 703, 16 (2001).

Download citation