The Coercivity - Remanence Tradeoff in Nanocrystalline Permanent Magnets

Abstract

The energy product (BH)max is a figure of merit quantifying the maximum amount of useful work that can be performed by the magnet. The energy product is determined by the magnetic remanence and the coercivity which, as extrinsic properties, are determined by the magnets’ microstructure. Thus, in principle, magnetic material microstructures may be tailored to obtain defined parameters to produce optimal permanent magnets. However, as asserted by the eponymous Murphy, “Nature favors the hidden flaw”. While there is still much undeveloped potential in nanomagnetic materials, with relevant length scales on the order of 100 Å, accumulating evidence strongly suggests that maximum remanence and maximum coercivity are mutually exclusive in nanocrystalline magnetic materials. Diverse experimental and computational results obtained from nanocrystalline Nd2Fe14B-based magnets produced by melt-spinning techniques and subjected to various degrees of thermomechanical deformation confirm this conclusion. Recent results obtained from temperature-dependent magnetic measurement, magnetic force microscopy and simple micromagnetic modeling will be reviewed and summarized. The results, while somewhat discouraging, do hint at possible materials design routes to sidestep the inherent performance limitations of the magnetic nanostructures.

This is a preview of subscription content, access via your institution.

References

  1. [1].

    C. D. Fuerst and E. G. Brewer, J. Appl. Phys. 73 (1993) 5751.

    CAS  Article  Google Scholar 

  2. [2].

    H. A. Davies, J. Magn. Magn. Mater. 157/158 11 (1996).

    CAS  Article  Google Scholar 

  3. [3].

    E. C. Stoner and E. P. Wohlfarth, Philos. Trans. Roy. Soc. London A 240 (1948) 599.

    Article  Google Scholar 

  4. [4].

    E. J. Kondorsky, J. Exp. Theor. Fiz. 10 (1940) 420.

    Google Scholar 

  5. [5].

    D. Givord and M. F. Rossignol, “Coercivity” Ch. 5 in Rare-earth Iron Permanent Magnets, J. M. D. Coey, Ed., Clarendon Press, Oxford (1996).

    Google Scholar 

  6. [6].

    L. H. Lewis, T. R. Thurston, V. Panchanathan, U. Wildgruber and D. O. Welch, J. Appl. Phys. 82 (7) (1997) 3430.

    CAS  Article  Google Scholar 

  7. [7].

    H. Kronmüller and T. Schrefl, J. Magn. Magn. Mater., 129 (1994) 66.

    Article  Google Scholar 

  8. [8].

    Giselher Herzer, Materials Science and Engineering A133 (1991) 1.

    CAS  Google Scholar 

  9. [9].

    R. C. O’Handley, Modern Magnetic Materials, John Wiley & Sons, New York (2000) 294.

    Google Scholar 

  10. [10].

    J. M. D. Coey, “Introduction” Ch. 1 in Rare-earth Iron Permanent Magnets, J. M. D. Coey, Ed., Clarendon Press, Oxford (1996).

    Google Scholar 

  11. [11].

    D. C. Crew, L. H. Lewis and V. Panchanathan, J. Magn. Magn. Mater. 223 (3) (2001) 261.

    CAS  Article  Google Scholar 

  12. [12].

    D.C. Crew, L.H. Lewis and V. Panchanathan, J. Magn. Magn. Mater. in press.

  13. [13].

    D. C. Crew and L. H. Lewis, IEEE Trans. Magn. in press.

  14. [14].

    W.F. Brown, Rev. Mod. Phys. 17 (1945) 15.

    Article  Google Scholar 

  15. [15].

    A. Aharoni, Rev. Mod. Phys. 34 (1962) 227.

    Article  Google Scholar 

  16. [16].

    S. Hirosawa and Y. Tsubokawa, J. Magn. Magn. Mater. 84 (1990) 309.

    CAS  Article  Google Scholar 

  17. [17].

    R. Grossinger, X.K. Sun, R. Eibler, K.H.J. Buschow and H.R. Kirchmayr, J. Magn. Magn. Mater. 58 (1986) 55.

    Article  Google Scholar 

  18. [18].

    D. C. Crew, L. H. Lewis, D. O. Welch, V. Panchanathan, J. Appl. Phys. 87 (2000) 6571.

    Google Scholar 

  19. [19].

    T. Schrefl, J. Fidler and H. Kronmüller, Phys. Rev. B 49 (9) (1994) 6100.

    Article  Google Scholar 

  20. [20].

    M. K. Griffiths, J. E. L. Bishop, J. W. Tucker and H. A. Davies, J. Magn. Magn. Mater. 183 (1998) 49.

    CAS  Article  Google Scholar 

  21. [21].

    M. J. Donohue and D. G. Porter <URL: http://math.nist.gov/oommf/> version 1.1.

  22. [22].

    T. Schrefl, H. F. Schmidts, J. Fidler, H. Kronmüller, J. Appl. Phys. 73 (1993) 6510–6512.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura H. Lewis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lewis, L.H., Crew, D.C. The Coercivity - Remanence Tradeoff in Nanocrystalline Permanent Magnets. MRS Online Proceedings Library 703, 28 (2001). https://doi.org/10.1557/PROC-703-U2.8

Download citation