Quantum-dot Cellular Automata

Abstract

An overview is given of the quantum-dot cellular automata (QCA) architecture, along with a summary of experimental demonstrations of QCA devices. QCA is a transistorless computation paradigm that can provide a solution to such challenging issues as device and power density. The basic building blocks of the QCA architecture, such as AND, OR gates and clocked cells have been demonstrated and will be presented here. The quantum dots used in the experiments to date are metal islands that are coupled by capacitors and tunnel junctions, and devices operate only at very low temperatures. For QCA to be used in practical devices, the operating temperature must be raised, and issues such as background charge must be addressed. An introduction will be given to these issues and possible solutions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. S. Lent and P. D. Tougaw, Journal of Applied Physics 74, 6227, (1993).

    CAS  Article  Google Scholar 

  2. 2.

    P. D. Tougaw and C. S. Lent, Journal of Applied Physics 75, 1818, (1994).

    Article  Google Scholar 

  3. 3.

    C. S. Lent and P. D. Tougaw, Proceedings of the IEEE 85, 541, (1997).

    CAS  Article  Google Scholar 

  4. 4.

    P. D. Tougaw and C. S. Lent, Journal of Applied Physics 80, 4722, (1996).

    CAS  Article  Google Scholar 

  5. 5.

    T. A. Fulton and G. H. Dolan, Physical Review Letters 59, 109, (1987).

    CAS  Article  Google Scholar 

  6. 6.

    A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, and G. L. Snider, Science 277, 928, (1997).

    CAS  Article  Google Scholar 

  7. 7.

    I. Amlani, A. O. Orlov, G. L. Snider, C. S. Lent, and G. H. Bernstein, Applied Physics Letters 72, 2179, (1998).

    CAS  Article  Google Scholar 

  8. 8.

    G. L. Snider, A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, J. L. Merz, and W. Porod, Semiconductor Science and Technology 13, A130, (1998).

    CAS  Article  Google Scholar 

  9. 9.

    I. Amlani, A. O. Orlov, G. L. Snider, C. S. Lent, and G. H. Bernstein, Applied Physics Letters 71, 1730, (1997).

    CAS  Article  Google Scholar 

  10. 10.

    I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and G. L. Snider, Science 284, 289–291, (1999).

    CAS  Article  Google Scholar 

  11. 11.

    G. Toth and C. S. Lent, Journal of Applied Physics 85, 2977, (1999).

    CAS  Article  Google Scholar 

  12. 12.

    D. V. Averin and A. A. Odintsov, Physics Letters A 140, 251, (1989).

    Article  Google Scholar 

  13. 13.

    R. Hull and J. Bean, Unpublished.

  14. 14.

    N. M. Zimmerman, W. H. Huber, A. Fujiwara, and Y. Takahashi, Applied Physics Letters 79, 3188, (2001).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Snider.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Snider, G.L., Orlov, A.O., Kummamuru, R.K. et al. Quantum-dot Cellular Automata. MRS Online Proceedings Library 696, 76 (2001). https://doi.org/10.1557/PROC-696-N7.6

Download citation