Skip to main content
Log in

Strategies For Direct Monolithic Integration of AlxGa(1−x)As/InxGa(1−x)As LEDS and Lasers On Ge/GeSi/Si Substrates Via Relaxed Graded GexSi(1−x) Buffer Layers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

AlxGa(1−x)As/GaAs quantum well lasers have been demonstrated via organometallic chemical vapor deposition (OMCVD) on relaxed graded GexSi(1−x) virtual substrates on Si. Despite unoptimized laser structures with high series resistance and large threshold current densities, surface threading dislocation densities as low as 2×106 cm−2 enabled cw room-temperature lasing at a wavelength of 858nm. The laser structures are oxide-stripe gain-guided devices with differential quantum efficiencies of 0.16 and threshold current densities of 1550A/cm2. Identical devices grown on commercial GaAs substrates showed differential quantum efficiencies of 0.14 and threshold current densities of 1700A/cm2. This comparative data agrees with our previous measurements of near-bulk minority carrier lifetimes in GaAs grown on Ge/GeSi/Si substrates. A number of GaAs/Ge/Si integration issues including thermal expansion mismatch and Ge autodoping behavior in GaAs were overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kroemer, T.Y. Liu, and M. Petroff, Journal of Crystal Growth 95, 96 (1989).

    Article  CAS  Google Scholar 

  2. Z. Hatzopoulos, D. Cengher, G. Deligeorgis, M. Androulidaki, E. Aperathitis, G. Halkias, A. Georgakilas, Journal of Crystal Growth 227–228, 193 (2001).

    Article  Google Scholar 

  3. Z.I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, Japanese Journal of Applied Physics 40 (8), 4903 (2001).

    Article  CAS  Google Scholar 

  4. P.J. Taylor, W.A. Jesser, J.D. Benson, M. Martinka, J.H. Dinan, J. Bradshaw, M. Lara-Taysing, R.P. Leavitt, G. Simonis, W. Chang, W.W. Clark, and K.A. Bertness, Journal of Applied Physics 89 (8), 4365 (2001).

    Article  CAS  Google Scholar 

  5. M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, Applied Physics Letters 72 (14), 1718 (1998).

    Article  CAS  Google Scholar 

  6. S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. Fitzgerald, A. Joshi, R. Brown, X. Wang, R. Sieg, S. Ringel, presented at the SPIE Conference on Optoelectronics, San Jose, CA, 1999 (unpublished).

    Google Scholar 

  7. S.A. Ringel, J.A. Carlin, C.W. Leitz, M. Currie, T. Langdo, E.A. Fitzgerald, M. Bulsara, D.M. Wilt, and E.V. Clark, presented at the 16th European Photovoltaics Solar Energy Conference and Exhibition, Glasgow, Scotland, 2000 (unpublished).

    Google Scholar 

  8. G.R. Srinivasan, Journal of the Electrochemical Society 127 (6), 1334 (1980).

    Article  CAS  Google Scholar 

  9. J.O. Carlsson, M. Boman, presented at the 9th International Conference on Chemical Vapor Deposition, Cincinnati, OH, 1984 (unpublished).

    Google Scholar 

  10. H. Kasano, Solid State Electronics 16, 913 (1973).

    Article  CAS  Google Scholar 

  11. S. H. Yellen, A.H. Shepard, R.J. Dalby, J.A. Baumann, H.B. Serreze, T.S. Guido, R. Soltz, K.J. Bystrom, C.M. Harding, and R.G. Waters, IEEE Journal of Quantum Electronics 29 (6), 2058 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groenert, M.E., Leitz, C.W., Pitera, A.J. et al. Strategies For Direct Monolithic Integration of AlxGa(1−x)As/InxGa(1−x)As LEDS and Lasers On Ge/GeSi/Si Substrates Via Relaxed Graded GexSi(1−x) Buffer Layers. MRS Online Proceedings Library 692, 9301 (2001). https://doi.org/10.1557/PROC-692-H9.30.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-692-H9.30.1

Navigation