Shallow-donor states in spherical quantum dots with parabolic confinement

Abstract

The evidence of a parabolic potential well in quantum wires and dots was reported in the literature, and a parabolic potential is often considered to be a good representation of the “barrier” potential in semiconductor quantum dots. In the present work, the variational and fractionaldimensional space approaches are used in a thorough study of the binding energy of on-center shallow donors in spherical GaAs-Ga1-xAlxAs quantum dots with potential barriers taken either as rectangular [Vb (eV) = 1.247 x for r R] or parabolic [Vb (r) = β2r2] isotropic barriers. We define the parabolic potential with a β parameter chosen so that it results in the same E0 groundstate energy as for the spherical quantum dot of radius R and rectangular potential in the absence of the impurity. Calculations using either the variational or fractional-dimensional approaches both for rectangular and parabolic potential result in essentially the same on-center binding energies provided the dot radius is not too small. This indicates that both potentials are alike representations of the quantum-dot barrier potential for a radius R quantum dot provided the parabolic potential is defined with β chosen as mentioned above.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Z. Xiao, J. Zhu, and F. He, Superlatt. and Microstruct. 19, 138 (1996), and references therein.

    Article  Google Scholar 

  2. 2.

    N. Porras-Montenegro and S. T. Pérez-Merchancano, Phys. Rev. B46, 9780 (1992).

    Article  Google Scholar 

  3. 3.

    L. E. Oliveira, C. A. Duque, N. Porras-Montenegro, and M. de Dios-Leyva, Physica B302–303, 72 (2001), and references therein.

    Article  Google Scholar 

  4. 4.

    K. Kash, B. P. Van der Gaag, D.D. Mahoney, A. S. Gozdz, L. T. Florez, and J. P.Harbison, Phys. Rev. Lett. 67, 1326 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    M. Sopanen et al, Appl. Phys. Lett. 66, 2364 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    Z. Xiao, J. Zhu, and F. He, Superlatt. and Microstruct. 19, 137 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    C. Bose, J. Appl. Phys. 83, 3089 (1998); C. Bose, Physica E4, 180 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    G. Murillo and N. Porras-Montenegro, Phys. Stat. Sol. (b) 220, 187 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    F. H. Stillinger, J. Math. Phys. 18, 1224 (1977); X-F. He, Phys. Rev. B43, 2063 (1991).

    Article  Google Scholar 

  10. 10.

    H. Mathieu, P. Lefebvre, and P. Christol, Phys. Rev. B46, 4092 (1992); ibid., J. Appl. Phys. 74, 5626 (1993); P. Lefebvre, P. Christol, H. Mathieu, and S. Glutsch, Phys. Rev. B52, 5756 (1995).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. A. Duque.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duque, C.A., Porras-Montenegro, N., de Dios-Leyva, M. et al. Shallow-donor states in spherical quantum dots with parabolic confinement. MRS Online Proceedings Library 692, 9201 (2001). https://doi.org/10.1557/PROC-692-H9.20.1

Download citation