Abstract
We have used the variational and fractional-dimensional space approaches in a study of the virial theorem value and scaling of the shallow-donor binding energies versus donor Bohr radiusin GaAs-(Ga,Al)As semiconductor quantum wells and quantum-well wires. A comparison is made with previous results with respect to exciton states. In the case the donor ground-state wave function may be approximated by a D-dimensional hydrogenic wave function, the virial theorem value equals 2 and the scaling rule for the donor binding energy versus quantum-sized Bohr radius is hyperbolic, both for quantum wells and wires. In contrast, calculations within the variational scheme show that the scaling of the donor binding energies with quantum-sized Bohr radius is in general nonhyperbolic and that the virial theorem value is nonconstant.
This is a preview of subscription content, access via your institution.
References
- 1.
F. Rossi, G. Goldoni, and E. Molinari, Phys. Rev. Lett. 78, 3527 (1997).
- 2.
Y. Zhang and A. Mascarenhas, Phys. Rev. B 59, 2040 (1999).
- 3.
L. E. Oliveira, Phys. Rev. B 38, 10641 (1988); N. Porras-Montenegro and S. T. Pérez-Merchancano, Phys. Rev. B 46, 9780 (1992).
- 4.
F. H. Stillinger, J. Math. Phys. 18 1224 (1977); X-F. He, Phys. Rev. B 43, 2063 (1991); P. Christol, P. Lefebvre and H. Mathieu, J. Appl. Phys. 74, 5626 (1993).
- 5.
A. Matos-Abiague, L. E. Oliveira, and M. de Dios-Leyva, Phys. Rev. B 58, 4072 (1998); E. Reyes-Gómez, L. E. Oliveira, and M. de Dios-Leyva, J. Appl. Phys. 85, 4045 (1999); E. Reyes-Gómez, A. Matos-Abiague, C. A. Perdomo-Leiva, M. de Dios-Leyva, and L. E. Oliveira, Phys. Rev. B 61, 13104 (2000); M. de Dios-Leyva and L. E. Oliveira, J. Phys.: Cond. Matter 13, 9471 (2001).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Dios-Leyva, M., Oliveira, L.E. On the scaling of exciton and impurity binding energies and the virial theorem in semiconductor quantum wells and quantum-well wires. MRS Online Proceedings Library 692, 3641 (2001). https://doi.org/10.1557/PROC-692-H6.34.1
Published: