InP Self Assembled Quantum Dot Lasers Grown on GaAs Substrates by Metalorganic Chemical Vapor Deposition

Abstract

We describe the operation of lasers having active regions composed of InP selfassembled quantum dots embedded in In0.5Al0.3Ga0.2P grown on GaAs (100) substrates by MOCVD. InP quantum dots grown on In0.5Al0.3Ga0.2P have a high density on the order of about 1–2×10 cm−2 with a dominant size of about 10–15 nm for 7.5 ML growth.[1] These In0.5Al0.3Ga0.2P/InP quantum dots have previously been characterized by atomic-force microscopy, high-resolution transmission electron microscopy, and photoluminescence.[2] We report here the 300K operation of optically pumped red-emitting quantum dots using both double quantum-dot active regions and quantum-dot coupled with InGaP quantum-well active regions. Optically and electrically pumped 300K lasers have been obtained using this active region design; these lasers show improved operation compared to the lasers having QD-based active regions with threshold current densities as low as Jth ∼ 0.5 KA/cm2.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. H. Ryou, R. D. Dupuis, G. Walter, N. Holonyak Jr, D. T. Mathes, R. Hull, C. V. Reddy, and V. Narayanamurti, J. Appl. Phys., to be published.

  2. [2]

    J. H. Ryou, PhD. Dissertation, The University of Texas at Austin (2001).

  3. [3]

    Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

    CAS  Article  Google Scholar 

  4. [4]

    M. Asada, Q. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. QE–22, 1915 (1986).

    Article  Google Scholar 

  5. [5]

    N. N. Ledentsov, M. Grundmann, F. Heinrichsdorff, D. Bimberg, V. M. Ustinov, A. E. Zhukov, M. V. Maximov, Zh. I. Alferov, and J. A. Lott, IEEE J. Select. Topic. Quantum Electron. 6, 439 (2000).

    CAS  Article  Google Scholar 

  6. [6]

    I. N. Stranski and L. Krastanow, Akad. Wiss. Wien, Math-Naturwess. Klasse 146, 797 (1937).

    Google Scholar 

  7. [7]

    V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999).

    CAS  Article  Google Scholar 

  8. [8]

    N. N. Ledentsov, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maksimov, I. F. Tavatadze, and P. S. Kop’ev, Semiconductors 28, 832 (1994).

    Google Scholar 

  9. [9]

    G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, Appl. Phys. Lett. 75, 3267 (1999).

    CAS  Article  Google Scholar 

  10. [10]

    A. Kurtenbach, K. Eberl, and T. Shitara, Appl. Phys. Lett. 66, 361 (1995).

    CAS  Article  Google Scholar 

  11. [11]

    A. Kurtenbach, C. Ulrich, N. Y. Jin-Phillipp, F. Noll, K. Eberl, K. Syassen, and F. Phillipp, J. Electron. Mater. 25, 3 (1996).

    Article  Google Scholar 

  12. [12]

    S. P. DenBaars, C. M. Reaves, V. Bressler-Hill, S. Varma, W. H. Weinberg, and P. M. Petroff, J. Cryst. Growth 145, 721 (1994).

    CAS  Article  Google Scholar 

  13. [13]

    N. Carlsson, W. Seifert, A. Petersson, P. Castrillo, M. E. Pistol, and L. Samuelson, Appl. Phys. Lett. 65, 3093 (1994).

    CAS  Article  Google Scholar 

  14. [14]

    J. Ahopelto, A. A. Yamguchi, K. Nishi, A. Usui, and H. Sakaki, Jpn. J. Appl. Phys. Part 2 32, L32 (1993).

    CAS  Article  Google Scholar 

  15. [15]

    Y. Nabetani, K. Sawada, Y. Fukukawa, A. Wakahara, S. Noda, A. Sasaki, J. Cryst. Growth 193, 470 (1998).

    CAS  Article  Google Scholar 

  16. [16]

    K. Eberl, A. Kurtenbach, M. Zundel, N. Y. Jin-Phillipp, F. Phillipp, A. Moritz, R. Wirth, and A. Hangleiter, J. Cryst. Growth 175/176, 702 (1997).

    CAS  Article  Google Scholar 

  17. [17]

    T. Riedl, E. Fehrenbacher, A. Hangleiter, M. K. Zundel, and K. Eberl, Appl. Phys Lett. 73, 3730 (1998).

    CAS  Article  Google Scholar 

  18. [18]

    Y. M. Manz, O. G. Schmidt, and K. Eberl, Appl. Phys. Lett. 76, 3343 (2000).

    CAS  Article  Google Scholar 

  19. [19]

    J. Porsche, M. Ost, F. Scholz, A. Fantini, F. Philipp, T. Riedl, and A. Hangleiter, IEEE J. Select. Topic Quantum Electron. 6, 482 (2000).

    CAS  Article  Google Scholar 

  20. [20]

    G. Walter, N. Holonyak Jr, J. H. Ryou and R. D. Dupuis, Appl. Phys. Lett. 78, 26, 4091 (2001).

    Google Scholar 

  21. [21]

    J. H. Ryou, R. D. Dupuis, G. Walter, D. A. Kellogg, N. Holonyak Jr, D. T. Mathes, R. Hull, C. V. Reddy, and V. Narayanamurti, Appl. Phys. Lett., 79, 4091 (2001).

    Article  Google Scholar 

  22. [22]

    J. H. Ryou, R. D. Dupuis, D. T. Mathes, R. Hull, C. V. Reddy, and V. Narayanamurti, Appl. Phys. Lett. 78, 3526 (2001).

    CAS  Article  Google Scholar 

  23. [23]

    J. H. Ryou, R. D. Dupuis, C. V. Reddy, V. Narayanamurti, D. T. Mathes, R. Hull, A Mintairov, and J. L. Merz, J. Electron. Mat. 30, 471 (2001).

    CAS  Article  Google Scholar 

  24. [24]

    G. Walter, N. Holonyak Jr, J. H. Ryou and R. D. Dupuis, Appl. Phys. Lett. 79, 3215 (2001).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. D. Dupuis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dupuis, R.D., Ryou, J.H., Heller, R.D. et al. InP Self Assembled Quantum Dot Lasers Grown on GaAs Substrates by Metalorganic Chemical Vapor Deposition. MRS Online Proceedings Library 692, 1161 (2001). https://doi.org/10.1557/PROC-692-H11.6.1

Download citation