Thermal Anneal Effects on Carbon-Hydrogen LVMs In AlGaN


Thermal annealing effects on carbon-hydrogen (C-H) complexes defects in AlGaN grown on sapphire by metalorganic chemical vapor deposition (MOCVD) technique have been investigated using Fourier transform infrared spectroscopy (FTIR). The CH complexes in AlGaN, formed either during growth or by proton irradiation, exhibit five local vibrational modes (LVMs) due to the symmetric and asymmetric vibrational stretching modes of C-H in CHn (n=1–;3) defect complexes. It was found that the annealing temperature (Ta) of 500°C is sufficient enough to dissociate most of the C-H complexes in AlGaN samples. A turning point annealing temperature is found around 300°C for un-irradiated Mg-doped sample, below which the total integrated area of the C-H LVMs continued to increase with increasing annealing temperature and reach the maximum value around 300°C. At Ta > 300°C, the total integrated area of the C-H LVMs starts to decrease and the C-H complexes seem to be completely depleted at Ta > 600°C. The depleted C-H LVMs were observed to partially recover after thermal annealing at Ta > 500°C and waiting for aging periods of several days. This recovery behavior is explained in terms of the hydrogen being remained inside the crystal after the dissociation of C-H complexes, subsequent diffusion and recombining again with carbon atom to reform C-H complexes.

This is a preview of subscription content, access via your institution.


  1. [1]

    S. Nakamura, T. Mukai, and M. Smoh, Appl. Phys. Lett. 64, 1687(1994).

    CAS  Article  Google Scholar 

  2. [2]

    S. Nakamura, G. Fasol, in: “The Blue Laser Diode”, (Springer, New York, 1997).

    Google Scholar 

  3. [3]

    M.S. Shur and M.A. Khan, GaN/AlGaN Heterostructure devices: Photodetectors and Field Effect Transistors, MRS Bulletin 22(2), pp. 44–50, Feb. (1997).

    CAS  Google Scholar 

  4. [4]

    M. Razeghi and A. Rogalski, Semiconductor ultraviolet detectors, J. Appl. Phys. 79(10), 7433 (1996).

    CAS  Article  Google Scholar 

  5. [5]

    K. Doverspike, A.E. Wickenden, S.C. Binari, D.K. Gaskill, J. A. Freitas, Mat. Res. Soc. Symp. Proc. 395 (1996) 897.

    CAS  Article  Google Scholar 

  6. [6]

    S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 1 31, 1258 (1992).

    CAS  Article  Google Scholar 

  7. [7]

    J. Neugebauer and C. G. Van de Walle, Phys. Rev. Lett. 75, 4452 (1995).

    CAS  Article  Google Scholar 

  8. [8]

    W. Gotz, N. M. Johnson, D. P. Bour, M. D. McCluskey, and E.E. Haller, Appl. Phys. Lett. 69, 3725 (1996).

    CAS  Article  Google Scholar 

  9. [9]

    G. C. Yi, and B. W. Wessels, Appl. Phys. Lett. 70(3), 357 (1996).

    Article  Google Scholar 

  10. [10]

    H. Wieder, M. Cardona, and C. R. Guarnieri, Phys. Status Solidi B 92, 99 (1979).

    CAS  Article  Google Scholar 

  11. [11]

    Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, and Y. Hamakawa, J. Appl. Phys. 53, 5273 (1982).

    CAS  Article  Google Scholar 

  12. [12]

    B. Dischler, A. Bubenzer, and P. Koidl, Solid State Commun. 48, 105 (1983).

    CAS  Article  Google Scholar 

  13. [13]

    “GaN and Related Materials”, edited by S. J. Pearton, Vol 2, Chapter 11, (Gordon and Breach, Amsterdam, 1997).

    Google Scholar 

  14. [14]

    L. Hoffmann, E. V. Lavrov, B. Bech Nielsen, B. Hourahine, R. Jones, S. Öberg and P. R. Briddon, Phys. Rev. B 61 No. 24, 16659 (2000).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. O. Manasreh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manasreh, M.O., Weaver, B.D. Thermal Anneal Effects on Carbon-Hydrogen LVMs In AlGaN. MRS Online Proceedings Library 692, 1041 (2001).

Download citation