Kinetic Exchange Vs. Room Temperature Ferromagnetism in Diluted Magnetic Semiconductors

Abstract

Guided by the internal-reference rule and the known band o sets in - and - diluted magnetic semiconductors, we discuss the feasibility of obtaining p-type conductivity, required for the carrier-induced ferromagnetism, as well as the cases for which the doping by shallow impurities may lead to the ferromagnetism driven by the double exchange. e consider the dependence of kinetic exchange on the p-d hybridization, on the electronic con gurations of the magnetic ions, and on the energies of the charge transfer betw een the valence band of host materials and the magnetic ions. n the case of n-based - compounds, the doping by acceptors is necessary for the hole-induced ferromagnetism. he latter is, how ever, possible without any doping for some of Mn-, Fe- or Co-based - magnetic semiconductors. n nitrides with Fe or Co carrier-induced ferromagnetism with TC > 300 is expected in the presence of acceptor doping.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    H. Ohno, et al., H. Munekata, T. Penney, S. von. Molnar and L.L. Chang, Phys. Rev.Lett. 68, 2664 (1992).

    CAS  Article  Google Scholar 

  2. [2]

    H. Ohno, et al. Appl. Phys. Lett. 69, 363 (1996).

    CAS  Article  Google Scholar 

  3. [3]

    A. Van. Esch, L. Van. Bockstal et al., Phys. Rev. B 56, 13103 (1997).

    Article  Google Scholar 

  4. [4]

    F. Matsukura, H. Ohno, A. Shen and Y. Sugawara, Phys. Rev.B 57, R2037 (1998).

    CAS  Article  Google Scholar 

  5. [5]

    A. Haury et al., Phys. Rev. Lett. 79, 511 (1997).

    CAS  Article  Google Scholar 

  6. [6]

    D. Ferrand et al., Phys. Rev. B 63, 085201 (2001).

    Article  CAS  Google Scholar 

  7. [7]

    H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).

    CAS  Article  Google Scholar 

  8. [8]

    T. Dietl, Physica E 10, 120 (2001).

    CAS  Article  Google Scholar 

  9. [9]

    Y. Ohno et al., Nature 402 790 (1999).

    CAS  Article  Google Scholar 

  10. [10]

    H. Ohno et al., Nature 408, 944(2000).

    CAS  Article  Google Scholar 

  11. [11]

    M. Tanaka and Y. Higo, Phys. Rev. Lett. 87, 026602 (2001).

    Article  CAS  Google Scholar 

  12. [12]

    T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000)

    CAS  Article  Google Scholar 

  13. [12]a.

    T. Dietl, H. Ohno and F. Matsukura, Phys. Rev. B 63, 195205 (2001).

    Article  CAS  Google Scholar 

  14. [13]

    T. Dietle-print: http://arXiv.org/abs/cond-mat/0201282 and references therein

  15. [13]a.

    Y.D. Park, et al., Appl. Phys. Lett 78, 2739 (2001).

    CAS  Article  Google Scholar 

  16. [14]

    T. Dietl, A. Haury, and Y. Merle d’Aubigné, Phys. Rev. B 55, R3347 (1997).

    CAS  Article  Google Scholar 

  17. [15]

    T. Andrearczyk et al., Proceedings25th ICPS, Osaka, Japan, 2000, eds. N. Miura and T. Ando (Spriger, Berlin, 2001) p. 235.

    Google Scholar 

  18. [16]

    P. Kacman, Semicon. Sci. Technol. 16, R25 (2001).

    CAS  Article  Google Scholar 

  19. [17]

    J. Kossut and W. Dobrowolski, in Handbook of Magnetic Materials, Vol.7, ed. K.H.J. Buschow (Elsevier, Amsterdam 1993), p. 231; T. Dietl, in Handbook on Semiconductors, Vol. 3B, ed. T.S. Moss (Elsevier, Amsterdam 1994), p. 1251.

    CAS  Google Scholar 

  20. [18]

    A.K. Bhattacharjee and C. Benoitàla Guillaume, Solid State Commun. 113, 17 (2000).

    Article  Google Scholar 

  21. [19]

    J. Szczytko, W. Bardyszewski and A. Twardowski, Phys. R ev. B64, 075306 (2001).

    Google Scholar 

  22. [20]

    S. Sanvito, P. Ordejon and N.A. Hill, Phys. R ev.B 63, 165206 (2001).

    Article  CAS  Google Scholar 

  23. [21]

    J. Okabayashi et al., Phys. Rev. B 58, R4211 (1998).

    CAS  Article  Google Scholar 

  24. [22]

    M. J. Caldas, A. Fuzzio and A. Zunger Appl. Phys. Lett 45, 671 (1984).

    CAS  Article  Google Scholar 

  25. [23]

    J.M. Langer, C. Delerue, M. Lannoo and H. Heinrich, Phys. Rev.B 38, 7723 (1988).

    CAS  Article  Google Scholar 

  26. [24]

    P. Vogl and J.M. Baranowski, Acta Phys. Polon. A 67, 133 (1985).

    Google Scholar 

  27. [25]

    A. Zunger, in: Solid State Phys., vol.39, eds. H. Ehrenreich and D. Turnbull (Academic Press, New York, 1986), p. 275.

    CAS  Article  Google Scholar 

  28. [26]

    V.I. Sokolov, Fiz. Tverd. Tela 29, 1848 (1987).

    CAS  Google Scholar 

  29. [27]

    D. Heiman et al., Mater. Res. Soc.Symp. Proc., Vol.161, (1990), p. 479.

    CAS  Article  Google Scholar 

  30. [28]

    S.M. Sze Physics of Semiconductor Devices (John Wiley and Sons, NY 1981), p. 849.

    Google Scholar 

  31. [29]

    S-H. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).

    CAS  Article  Google Scholar 

  32. [30]

    I. Vurgaftman, J.R. Meyer and L.R Ram-Mohan, J. Appl. Phys. 89, 5815(2001).

    CAS  Article  Google Scholar 

  33. [31]

    J. Kreissl, W. Ulrici, M. El-Metoui, A.-M. Vasson, A. Vasson and A. Gavaix, Phys. Rev.B 54, 10508 (1996).

    CAS  Article  Google Scholar 

  34. [32]

    K. Ueda, H. Tabata and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

    CAS  Article  Google Scholar 

  35. [33]

    H. Saeki, H. Tabata and T. Kawai, Solid State Commun. 120, 439 (2001).

    CAS  Article  Google Scholar 

  36. [34]

    J. Blinowski, P. Kacman and J.A. Majewski, J. Cryst. Growth 159, 972 (1996).

    CAS  Article  Google Scholar 

  37. [35]

    C. Benoitàla Guillaume, D. Scalbert and T. Dietl, Phys. Rev. B46, 9853 (1992).

    Article  Google Scholar 

  38. [36]

    T. Dietl, F. Matsukura and H. Ohno, e-print: http://arXiv.org/abs/cond-mat/0109245.

  39. [37]

    P Glód, T. Dietl, T. Fromherz, G. Bauer and I. Miotkowski Phys. Rev.B 49, 7797 (1994).

    Article  Google Scholar 

  40. [38]

    H. Ohldag et al., Appl. Phys. Lett. 76, 2928 (2000).

    CAS  Article  Google Scholar 

  41. [39]

    J.H. Park, S.K. Kwon and B.I. Min, Physica B 281&282, 703 (2000).

    CAS  Article  Google Scholar 

  42. [40]

    H. Akai, Phys. Rev. Lett. 81, 3002 (1998).

    CAS  Article  Google Scholar 

  43. [41]

    J. Blinowski and P. Kacman, Phys. Rev.B 46, 12298 (1992).

    CAS  Article  Google Scholar 

  44. [42]

    T. Nambu, unpublished.

  45. [43]

    J. Blinowski and P. Kacman, ActaPhys. Polon. A 100, 343 (2001).

    CAS  Article  Google Scholar 

  46. [44]

    H. Akinaga et al., Appl. Phys. Lett. 77, 4377 (2000).

    CAS  Article  Google Scholar 

  47. [45]

    M Zajac et al., Appl. Phys. Lett. 79, 2432 (2001).

    CAS  Article  Google Scholar 

  48. [46]

    A Wolos’, M. Palczewska, M Kaminska and A. Twardowski, unpublished.

  49. [47]

    N. Theodoropolpu et al., Appl. Phys. Lett. 78, 3475 (2001).

    Article  CAS  Google Scholar 

  50. [48]

    M. L. Reed. Appl. Phys. Lett. 79, 3473 (2001).

    CAS  Article  Google Scholar 

  51. [49]

    S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto and H. Hori, e-print: http://arXiv.org/abs/cond-mat/0108159.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Blinowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blinowski, J., Kacman, P. & Dietl, T. Kinetic Exchange Vs. Room Temperature Ferromagnetism in Diluted Magnetic Semiconductors. MRS Online Proceedings Library 690, F6.9 (2001). https://doi.org/10.1557/PROC-690-F6.9

Download citation