Atomistic Modeling of Amorphization in Silicon

Abstract

We discuss atomistic simulations of ion implantation and annealing of Si over a wide range of ion dose and substrate temperatures. The DADOS Monte Carlo model has been extended to include the formation of amorphous regions, and this allows simulations of dopant diffusion at high doses. As the dose of ions increases, a continuous amorphous layer may be formed. In that case, most of the excess interstitials generated by the implantation may be swept to the surface as the amorphous layer regrows, instead of diffusing through the crystalline region. This process reduces the amount of transient enhanced diffusion during annealing. This model also reproduces the dynamic annealing during high temperature implants.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P.A. Stolk, H.-J. Gossmann, D.J. Eaglesham, D.C. Jacobson, C.S. Rafferty, G.H. Gilmer, M. Jaraiz, J.M. Poate, H.S. Luftman, T.E. Haynes, J.Appl. Phys. 81, 6031 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    M. D. Giles, J. Electrochem. Soc. 138, 1160 (1991).

    CAS  Article  Google Scholar 

  3. 3.

    L. Pelaz, G.H. Gilmer, V.C. Venezia, H.-J. Gossmann, M. Jaraiz, J. Barbolla, Appl. Phys. Lett. 74, 2017 (1999).

    CAS  Article  Google Scholar 

  4. 4.

    M.T. Robinson and I.M. Torrens, Phys. Rev. B 9, 5008 (1974).

    CAS  Article  Google Scholar 

  5. 5.

    M. Jaraiz, L. Pelaz, E. Rubio, J. Barbolla, G.H. Gilmer, D.J. Eaglesham, H.J. Gossmann, J.M. Poate, Mater. Res. Soc. Symp. Proc. 54, 532 (1998).

    Google Scholar 

  6. 6.

    M. Tang, L. Colombo, J. Zhu and T. Diaz de la Rubia, Phys. Rev. B 55, 4279 (1997).

    Google Scholar 

  7. 7.

    G.H. Gilmer, T. Diaz de la Rubia, D.M. Stock, M. Jaraiz. Nucl. Instr. and Meth. In Phys. Res. B 102, 247 (1995).

    CAS  Article  Google Scholar 

  8. 8.

    L.A. Marqués, L. Pelaz, J. Hernandez, J. Barbolla, G.H. Gilmer, Phys. Rev. B 64, 045214 (2001).

    Article  Google Scholar 

  9. 9.

    M.-J. Caturla, T. Diaz de la Rubia, L.A. Marqués, G.H. Gilmer, Phys. Rev. B 54, 16683 (1996).

    CAS  Article  Google Scholar 

  10. 10.

    L. Pelaz, M. Jaraiz, G.H. Gilmer, H-J. Gossmann, C.S. Rafferty, D.J. Eaglesham and J.M. Poate, Appl. Phys. Lett 70, 285 (1997).

    Article  Google Scholar 

  11. 11.

    J.S. Williams, R.G. Elliman, W.L. Brown, and T.E. Seidel, Phys. Rev. Lett. 55, 1482 (1985).

    CAS  Article  Google Scholar 

  12. 12.

    O.W. Holland, C.W. White, Nucl. Instrum. Methods Phys. Res. B 59/60, 353 (1991).

    Article  Google Scholar 

  13. 13.

    T. Motooka and O.W. Holland, Appl. Phys. Lett. 61 (25), 3005 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    R.D. Goldberg, J.S. Williams, R.G. Elliman, Nucl. Instrum. Methods Phys. Res. B 106, 242 (1995).

    CAS  Article  Google Scholar 

  15. 15.

    M.L. Swanson, J.R. Parson, C.W. Hoelke, Radiat. Eff. 9, 249 (1971).

    CAS  Article  Google Scholar 

  16. 16.

    F.W. Morehead, B.L. Crowder, Radiat. Eff. 6, 27 (1970).

    Google Scholar 

  17. 17.

    L. Pelaz, G.H. Gilmer, V.C. Venezia, H.-J. Gossmann, M. Jaraiz, J. Barbolla, Appl. Phys. Lett. 74, 2017 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    L. Csepregi, J.W. Mayer, T.W. Sigmon, Phys. Lett. 54A (1975), 157.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lourdes Pelaz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pelaz, L., Marqués, L.A., Gilmer, G.H. et al. Atomistic Modeling of Amorphization in Silicon. MRS Online Proceedings Library 669, 93 (2001). https://doi.org/10.1557/PROC-669-J9.3

Download citation