Abstract
We discuss atomistic simulations of ion implantation and annealing of Si over a wide range of ion dose and substrate temperatures. The DADOS Monte Carlo model has been extended to include the formation of amorphous regions, and this allows simulations of dopant diffusion at high doses. As the dose of ions increases, a continuous amorphous layer may be formed. In that case, most of the excess interstitials generated by the implantation may be swept to the surface as the amorphous layer regrows, instead of diffusing through the crystalline region. This process reduces the amount of transient enhanced diffusion during annealing. This model also reproduces the dynamic annealing during high temperature implants.
This is a preview of subscription content, access via your institution.
References
- 1.
P.A. Stolk, H.-J. Gossmann, D.J. Eaglesham, D.C. Jacobson, C.S. Rafferty, G.H. Gilmer, M. Jaraiz, J.M. Poate, H.S. Luftman, T.E. Haynes, J.Appl. Phys. 81, 6031 (1997).
- 2.
M. D. Giles, J. Electrochem. Soc. 138, 1160 (1991).
- 3.
L. Pelaz, G.H. Gilmer, V.C. Venezia, H.-J. Gossmann, M. Jaraiz, J. Barbolla, Appl. Phys. Lett. 74, 2017 (1999).
- 4.
M.T. Robinson and I.M. Torrens, Phys. Rev. B 9, 5008 (1974).
- 5.
M. Jaraiz, L. Pelaz, E. Rubio, J. Barbolla, G.H. Gilmer, D.J. Eaglesham, H.J. Gossmann, J.M. Poate, Mater. Res. Soc. Symp. Proc. 54, 532 (1998).
- 6.
M. Tang, L. Colombo, J. Zhu and T. Diaz de la Rubia, Phys. Rev. B 55, 4279 (1997).
- 7.
G.H. Gilmer, T. Diaz de la Rubia, D.M. Stock, M. Jaraiz. Nucl. Instr. and Meth. In Phys. Res. B 102, 247 (1995).
- 8.
L.A. Marqués, L. Pelaz, J. Hernandez, J. Barbolla, G.H. Gilmer, Phys. Rev. B 64, 045214 (2001).
- 9.
M.-J. Caturla, T. Diaz de la Rubia, L.A. Marqués, G.H. Gilmer, Phys. Rev. B 54, 16683 (1996).
- 10.
L. Pelaz, M. Jaraiz, G.H. Gilmer, H-J. Gossmann, C.S. Rafferty, D.J. Eaglesham and J.M. Poate, Appl. Phys. Lett 70, 285 (1997).
- 11.
J.S. Williams, R.G. Elliman, W.L. Brown, and T.E. Seidel, Phys. Rev. Lett. 55, 1482 (1985).
- 12.
O.W. Holland, C.W. White, Nucl. Instrum. Methods Phys. Res. B 59/60, 353 (1991).
- 13.
T. Motooka and O.W. Holland, Appl. Phys. Lett. 61 (25), 3005 (1992).
- 14.
R.D. Goldberg, J.S. Williams, R.G. Elliman, Nucl. Instrum. Methods Phys. Res. B 106, 242 (1995).
- 15.
M.L. Swanson, J.R. Parson, C.W. Hoelke, Radiat. Eff. 9, 249 (1971).
- 16.
F.W. Morehead, B.L. Crowder, Radiat. Eff. 6, 27 (1970).
- 17.
L. Pelaz, G.H. Gilmer, V.C. Venezia, H.-J. Gossmann, M. Jaraiz, J. Barbolla, Appl. Phys. Lett. 74, 2017 (1999).
- 18.
L. Csepregi, J.W. Mayer, T.W. Sigmon, Phys. Lett. 54A (1975), 157.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pelaz, L., Marqués, L.A., Gilmer, G.H. et al. Atomistic Modeling of Amorphization in Silicon. MRS Online Proceedings Library 669, 93 (2001). https://doi.org/10.1557/PROC-669-J9.3
Published: