Phosphorus diffusion in silicon; influence of annealing conditions

Abstract

Phosphorus diffusion has been studied in both pure epitaxially grown silicon and Cz silicon, with a substantial amount of impurities like oxygen and carbon. Anneals have been performed in different atmospheres, N2 and dry O2, as well as in vacuum, at temperatures between 810 - 1100°C. Diffusion coefficients extracted from these anneals show no difference for the P diffusion in the epitaxially grown or the Cz silicon. The diffusion coefficients follow an Arrhenius dependence with the activation energy Ea=2.74±0.07 eV and a prefactor D0 = (8±5)×10-4 cm2/s. These parameters differ considerably from the previously reported and widely accepted values (3.66 eV and 3.84 cm2/s, respectively). However, vacuum anneals of the same samplesresult in values close to this 3.6 eV diffusion mode. Furthermore, control anneals of boron doped samples, with similar design as the phosphorus samples, suggest the same trend for boron diffusion in silicon - lower versus higher values of activation energies for nitrogen and vacuum anneals, respectively. These results are discussed in terms of the concentration of Si self-interstitials mediating the diffusion of phosphorus and boron.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. N. Ghoshtagore, Phys. Rev. B 3, 389 (1971)

    Article  Google Scholar 

  2. 2.

    J. S. Makris and B. J. Masters, J. Electrochem. Soc. 120, 1252 (1973)

    CAS  Article  Google Scholar 

  3. 3.

    A. M. Lin, D. A. Antoniadis, and R. W. Dutton, J. Electrochem. Soc. 128, 1131 (1981)

    CAS  Article  Google Scholar 

  4. 4.

    C. Hill, in Semiconductor Silicon 1981, edited by H. R. Huff, J. R. Kriegler, and Y. Takeishi (Electrochemical Society, New York, 1981) p. 988

  5. 5.

    Y. Ishikawa, Y. Sakina, H. Tanaka, S. Matsumoto, and T. Niimi, J. Electrochem. Soc. 129, 644 (1982)

    CAS  Article  Google Scholar 

  6. 6.

    Y. M. Haddara, B. T. Folmer, M. E. Law, and T. Buyuklimanli, Appl. Phys. Lett 77, 1976 (2000)

    CAS  Article  Google Scholar 

  7. 7.

    J. Fage-Pedersen, PhD. Thesis, university of Aarhus, 2001

    Google Scholar 

  8. 8.

    P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989)

    CAS  Article  Google Scholar 

  9. 9.

    N. R. Zangenberg, J. Fage-Pedersen, J. Lundsgaard Hansen, and A. Nylandsted Larsen, To be published in Defect Diffus. Forum 194-199 (2001)

    Google Scholar 

  10. 10.

    H. Rücker, B. Heinemann, W. Röpke, R. Kurps, D. Krüger, G. Lippert, and H. J. Osten, Appl. Phys. Lett. 73, 1682 (1998)

    Article  Google Scholar 

  11. 11.

    Y. Zhao, M. J. Aziz, H.-J. Gossmann, S. Mitha, and D. Schiferl, Appl. Phys. Lett. 74, 31 (1999)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. S. Christensen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christensen, J.S., Kuznetsov, A.Y., Radamson, H.H. et al. Phosphorus diffusion in silicon; influence of annealing conditions. MRS Online Proceedings Library 669, 39 (2001). https://doi.org/10.1557/PROC-669-J3.9

Download citation