Energy Level Alignment and Exciton Binding Energies Using Model Interfaces between Metals and Evaporable Organic Electroluminescent Materials

Abstract

We report on a scanning probe spectroscopy study of the electronic properties of model organic/metal interfaces. The experiments allow us to determine parameters that are critical in charge carrier injection and transport, as are the energy gap between positive and negative polaronic states and the height of the barrier for charge carrier injection at metal/organic interfaces. In combination with optical absorption measurements, we gauge the exciton binding energy, a parameter determining energy transport and electroluminescence efficiency. The study was performed on thin films of tris(8-hydroxyquinolato)aluminum (Alq3) deposited on clean and LiF-covered Au(111), and on N,N’-di(naphthalen-1-yl)-N,N’-diphenylbenzidine (NPB) on Ni(111) and substrates.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 83, 4928 (1998)

    CAS  Article  Google Scholar 

  2. 1a.

    H. Ishii and K. Seki, IEEE Trans. Electron Dev. 44, 1295 (1997)

    CAS  Article  Google Scholar 

  3. 1b.

    K. Seki, E. Ito, and I. Ishii, Synthetic Metals 91, 137 (1997).

    CAS  Article  Google Scholar 

  4. 2.

    A. Rajagopal, C. I. Wu, and A. Kahn, J. Appl. Phys. 83, 2649 (1998)

    CAS  Article  Google Scholar 

  5. 2a.

    I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998).

    CAS  Article  Google Scholar 

  6. 3.

    C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett. 67, 3853 (1995).

    CAS  Article  Google Scholar 

  7. 4.

    M. Matsumura and T. Akai, Jpn. J. Appl. Phys. 35, 5357 (1996).

    CAS  Article  Google Scholar 

  8. 5.

    M. Probst and R. Haight, Appl. Phys. Lett. 71, 202 (1997).

    CAS  Article  Google Scholar 

  9. 6.

    A. Schmidt, M. L. Anderson, and N. R. Armstrong, J. Appl. Phys. 78, 5619 (1995).

    CAS  Article  Google Scholar 

  10. 7.

    S. F. Alvarado, L. Rossi, P. Müller, P.F. Seidler, and W. Riess, IBM J. Res. Develop. 45, 89 (2001).

    CAS  Article  Google Scholar 

  11. 8.

    S. F. Alvarado, P. F. Seidler, D. G. Lidzey, and D. D. C. Bradley, Phys. Rev. Lett. 81, 1082 (1998).

    CAS  Article  Google Scholar 

  12. 9.

    S. F. Alvarado, L. Libioulle, and P. F. Seidler, Synthetic Metals 91, 69 (1997).

    CAS  Article  Google Scholar 

  13. 10.

    G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett. 71, 1762 (1997).

    CAS  Article  Google Scholar 

  14. 11.

    Q. T. Le, L. Yan, Y. Goa, M. G. Mason, D. J. Giesen, and C. W. Tang, J. Appl. Phys. 87, 375 (2000) and references therein.

    CAS  Article  Google Scholar 

  15. 12.

    T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, Appl. Phys. Lett. 73, 2763 (1998).

    CAS  Article  Google Scholar 

  16. 13.

    Y. Yoshimura, T. Yokoyama, H. Ishii, Y. Ouchi, S. Hasegawa, and K. Seki, Synthetic Metals 102, 1145 (1999).

    CAS  Article  Google Scholar 

  17. 14.

    M. G. Mason, C. W. Tang, L.-S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S.-T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos, and J. L. Brédas, J. Appl. Phys. 89, 2756 (2001).

    CAS  Article  Google Scholar 

  18. 15.

    S. T. Lee, X. Y. Hou, M. G. Mason, and C. W. Tang, Appl. Phys. Lett. 72, 1593 (1998).

    CAS  Article  Google Scholar 

  19. 16.

    R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian, and N. R. Armstrong, J. Appl. Phys. 84, 6729 (1998).

    CAS  Article  Google Scholar 

  20. 17.

    A. Curioni and W. Andreoni, IBM J. Res. Develop. 45, 101 (2001).

    CAS  Article  Google Scholar 

  21. 18.

    M. Matsumura and Y. Jinde, Appl. Phys. Lett. 73, 2872 (1998).

    CAS  Article  Google Scholar 

  22. 19.

    M. Matsumura, K. Furukawa, and Y. Jinde, Thin Solid Films 331, 96 (1998).

    CAS  Article  Google Scholar 

  23. 20.

    H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, and H. von Seggern, J. Appl. Phys. 89, 420 (2001).

    CAS  Article  Google Scholar 

  24. 21.

    H. Fujikawa, T. Mori, K. Noda, M. Ishii, S. Tokito, and Y. Taga, J. Luminescence 87-89, 1177 (2000).

    CAS  Article  Google Scholar 

  25. 22.

    H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    CAS  Article  Google Scholar 

  26. 23.

    S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, Appl. Phys. Lett. 74, 670 (1999).

    CAS  Article  Google Scholar 

  27. 24.

    S. V. van Slyke et al., Appl. Phys. Lett. 69, 2160 (1996).

    Article  Google Scholar 

  28. 25.

    L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).

    CAS  Article  Google Scholar 

  29. 26.

    E. M. Conwell, Synthetic Metals 83, 101 (1996).

    CAS  Article  Google Scholar 

  30. 27.

    A. Curioni and W. Andreoni, paper in preparation.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Santos F. Alvarado.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alvarado, S.F., Rieβ, W. Energy Level Alignment and Exciton Binding Energies Using Model Interfaces between Metals and Evaporable Organic Electroluminescent Materials. MRS Online Proceedings Library 665, 512 (2000). https://doi.org/10.1557/PROC-665-C5.12

Download citation