Alteration of Uranium-Rich Microlite


Microlite, a Ta-rich member of the pyrochlore group, occurs in 440 Ma old lithium pegmatites in Mozambique and exhibits a pronounced growth zoning, with a U-free core surrounded by a U-rich rim (UO2 ≤ 17 wt%). Subsequent to the uplift of the host rock, microlite was subjected to intense low-temperature alteration during which Na, Ca and F were leached from the microlite crystals. This alteration, resulting from exposure to tropical conditions, also led to localized redistribution of radiogenic Pb (formation of plumbomicrolite) and to hydration of microlite, but U remained immobile. The low-temperature alteration effects are only observed in the U-rich rim, which is characterized by abundant microfractures. As demonstrated by electron diffraction images and powder X-ray patterns, the U-rich rim is largely metamict. Our investigation illustrates the importance of natural analogues in evaluating the durability of pyrochlore-based nuclear waste-form materials over geologic time.

This is a preview of subscription content, access via your institution.


  1. 1.

    E.R. Vance, C.J. Ball, R.A. Day, K.L. Smith, M.G. Blackford, B.D. Begg and P.J. Angel, Journal of Alloys and Compounds 213/214, 406–409, 1994.

    CAS  Article  Google Scholar 

  2. 2.

    E.C. Buck, D.B. Chamberlain and R. Gieré, in:Scientific Basis for Nuclear Waste Management XXII, edited by D.J. Wronkiewicz and J.H. Lee, Mater. Res. Soc. Proc. 556, Boston, USA, 1999, p. 19–26

  3. 3.

    A.B. Harker, in: Radioactive Waste Forms for the Future, W. Lutze and R.C. Ewing, eds., pp. 335–392, North-Holland, Amsterdam, 1988.

  4. 4.

    R.C. Ewing, W.J. Weber and F.W. Clinard, Progress in Nuclear Energy 29(2), 63–127, 1995.

    CAS  Article  Google Scholar 

  5. 5.

    D.D. Hogarth, American Mineralogist 62, 403–410, 1977.

    CAS  Google Scholar 

  6. 6.

    J.L. Pouchou and F. Pichoir, Recherches Aérospatiales 1984–3, 167–192, 1984.

    Google Scholar 

  7. 7.

    J.M. Correia Neves, J.E. Lopes Nunes and D.B. Lucas, Revista de Ciências Geológicas, LourenÇo Marques, Série A4, 35–42, 1971.

    Google Scholar 

  8. 8.

    O. Von Knorring and A. Fadipe, Bulletin de Minéralogie 104, 496–507, 1981.

    Article  Google Scholar 

  9. 9.

    R. Gieré, R.J. Swope, E. Buck, R. Guggenheim, D. Mathys and E. Reusser, in: Scientific Basis for Nuclear Waste Management XXIII, edited by R.W. Smith and D.W. Shoesmith, Mater. Res. Soc. Proc. 608, Boston, USA, 2000, p. 519–524

  10. 10.

    G.R. Lumpkin and R.C. Ewing, Physics and Chemistry of Minerals 16, 2–20, 1988.

    CAS  Article  Google Scholar 

  11. 11.

    R.S. Vose, R.L. Schmoyer, P.M. Steurer, T.C. Peterson, R. Heim, T.R. Karl and J.K. Eischeid, Global Historical Climatology Network, National Climatic Data Center, 2000.

    Google Scholar 

  12. 12.

    G.R. Lumpkin and R.C. Ewing, American Mineralogist 77, 179–188, 1992.

    CAS  Google Scholar 

  13. 13.

    G.R. Lumpkin and R.C. Ewing, American Mineralogist 80, 732–743, 1995.

    CAS  Article  Google Scholar 

  14. 14.

    G.R. Lumpkin and R.C. Ewing, American Mineralogist 81, 1237–1248, 1996.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. Gieré.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gieré, R., Buck, E.C., Guggenheim, R. et al. Alteration of Uranium-Rich Microlite. MRS Online Proceedings Library 663, 935 (2000).

Download citation