Skip to main content
Log in

Ion Exchange Behavior of the Febex Bentonite. 1. Na/K, Na/Mg and Na/Ca Experimental Exchange Isotherms

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Na/K, Na/Mg, and Na/Ca exchange isotherms have been experimentally determined for the FEBEX bentonite. Na-homoionized FEBEXbentonite was reacted at room temperature with mixedsalt dissolution of NaCl/KCl, NaCl/MgCl2, or NaCl/CaCl2, while keeping a total cation normality of 0.5 eq L-1. Isotherm exchange experiments were performed using ten (duplicated)experimental points, which cover the complete range of the corresponding binary equivalent fractions. Results indicate that for the Na/K exchange reaction, Vanselow coefficients are larger than one, what is in agreement with the tendency of the smectite of having greater affinity for K than for Na. The exchange constant decreases as K progressively replaces Na in the smectite. This tendency ends when the equivalent fraction of potassium, E K, reaches a value of around 0.250.3. From this point to higher K contents, it remains nearly constant irrespective of E K but slightly decreasing again at values near one. The Vanselow selectivity coefficient for the Na/Mg isotherm indicates a preference for the divalent cation. It is nearly constant (Kv ≍ 5.6) for E Mg < 0.6, but increases up to 10.2 for a nearly Mg-saturated smectite.

The Na/Ca exchange resembles that of Na/Mg, although the selectivity coefficients are larger (Kv ≍ 7.0 for E Ca < 0.6). The comparison of the selectivity coefficients for the Na/Mg and Na/Ca exchange reactions indicates that the smectite has a slightly higher affinity for Ca than for Mg. This result is consistent with those observed for the Wyoming bentonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Linares, F. Huertas, M. Lachica, and E. Reyes, Proc. Intl. Clay Conf., 1, 351, (1972)

    Google Scholar 

  2. E. Caballero, M. Fernandes Porto, J. Linares, F. Huertas, and E. Reyes, Est. Geol. 39, 121 (1983)

    CAS  Google Scholar 

  3. G. Leone, E. Reyes, G. Cortecci, A. Pochini, and J. Linares, Clay Miner. 18, 227 (1983)

    Article  CAS  Google Scholar 

  4. J.M. Fernández Soler, PhD. Thesis, University of Granada, 1992

  5. J. Linares, F. Huertas, E. Reyes, E. Caballero, E. Barahona, J.L. Guardiola, J. Yáथez, E. Romero, and A. Delgado, ENRESA Technical Report 01/93, Madrid, 1993

    Google Scholar 

  6. ENRESA, Technical Report 09/97, ENRESA, Madrid, 1997.

  7. L. Shapiro, US Geol. Surv. Bull., 1401, 76 (1975)

    Google Scholar 

  8. Soil Conservation Service, Soil Survey Laboratory Methods and Procedure for Collecting Soil Samples, U.S.D.A., Washington DC, 1972

  9. G. Sposito, The Thermodynamics of Soil Solutions (Oxford University Press, New York), 1981

    Google Scholar 

  10. T.J. Wolery, Report No. URCL-MA-110662 PT III, Lawrence Livermore National Laboratory, 1992

    Google Scholar 

  11. G. Sposito, The Surface Chemistry of Soils (Oxford University Press, New York), 1984

    Google Scholar 

  12. M.G.M. Bruggenwert, and A. Kamphorst, in Soil Chemistry. 5-B. Physico-chemical Models, edited by G.H. Bolt (Elsevier, Amsterdam), p. 141, 1983

  13. P. Fletcher, G. Sposito, and C.S. LeVesque, Soil Sci. Soc. Am. J. 48, 1016 (1984)

    Article  CAS  Google Scholar 

  14. F.J. Huertas, J. Cuadros, and J. Linares, Appl. Geochem. 10, 347 (1995)

    Article  CAS  Google Scholar 

  15. I. Shainberg, and A. Kaiserman, Soil Sci. Soc. Am. J. 33, 547 (1969)

    Article  CAS  Google Scholar 

  16. K. Verburg and P. Baveye, Clays Clays Miner. 42, 207 (1994)

    Article  CAS  Google Scholar 

  17. D.L. Suarez, and M.F. Zahow, Soil Sci. Soc. Am. J. 53, 52 (1989)

    Article  CAS  Google Scholar 

  18. A.P. Vanselow, Soil Sci. 33, 95 (1932)

    Article  CAS  Google Scholar 

  19. E.N. Gapon, J. Gen. Chem. 3, 144 (1933)

    CAS  Google Scholar 

  20. G.L. Gaines, and H.C. Thomas, J. Chem. Phys. 21, 714 (1953)

    Article  CAS  Google Scholar 

  21. C.A.J. Appelo, and D. Postma, D., Geochemistry, Groundwater and Pollution (Ed. Balkema, Rotterdam), 1993

    Google Scholar 

  22. P. Fletcher, Chemical Thermodynamics for Earth Scientists (Longman Eds., Burt Mill), 1993

    Google Scholar 

  23. J. Delgado, P. Carretero, R. Juncosa, J. Samper, F.J. Huertas, C. Jiménez de Cisneros, E. Caballero, F. Huertas, J. Linares, in this volume

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huertas, F.J., Carretero, P., Delgado, J. et al. Ion Exchange Behavior of the Febex Bentonite. 1. Na/K, Na/Mg and Na/Ca Experimental Exchange Isotherms. MRS Online Proceedings Library 663, 589 (2000). https://doi.org/10.1557/PROC-663-589

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-663-589

Navigation