Measured Displacement Energies of Oxygen Ions in Zirconolite and Rutile

Abstract

Optical emission spectra in the 300-700 nm range were collected from zirconolite and rutile specimens irradiated with a 3 μs pulsed electron beam using a Febetron 706 variable energy pulsed electronbeam generator. The long-lived emissions (up to microseconds after the electron pulse) consist of broad (halfwidths ~ 100 nm) bands centred around ~400 nm. Over the range 0.2 MeV to 0.6 MeV, the emission intensity per unit dose versus electron beam energy data from the rutile sample showed a single stage dependence on electron beam energy, whereas the zirconolite data suggested a two stage dependence. Rutile has a threshold of 0.23 ½ 0.02 MeV, which gives an E d value of 39 ½ 4 eV for oxygen. Zirconolite has a threshold of 0.26 ½ 0.02 MeV, which gives an E d value of 45 ½4 eV for oxygen. These data are discussed in the context of previously measured and calculated E d values for other oxides.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. Ringwood, S. E. Kesson, N. G. Ware, W. Hibberson and A. Major, “Immobilisation of high level nuclear reactor wastes in Synroc,” Nature (London), 278 (1979 219–23).

    CAS  Article  Google Scholar 

  2. 2.

    W.J. Weber, R. P. Turcotte and F. P. Roberts, “Radiation Damage from Alpha Decay in Ceramic Waste Forms,” Radioactive Waste Management, 2 (1982) 295–319.

    CAS  Google Scholar 

  3. 3.

    W.J. Weber, J.W. Wald, and Hj, Matzke, J. Nucl. Mater. 138 (1986) 196.

    CAS  Article  Google Scholar 

  4. 4.

    H. Mitamura, S. Matsumoto, M. W. A. Stewart, T. Tsuboi, M. Hashimoto, E.R. Vance, K. P. Hart, Y. Togashi, H. Kanazawa, C. J. Ball and T.J. White, J. Amer. Ceram. Soc., 77 (1994) 2255–64.

    CAS  Article  Google Scholar 

  5. 5.

    F.W. Clinard Jr, D.L. Rohr, and R.B. Roof, Nucl. Instr. Meth. Phys. Res. B1 (1984) 581.

    Article  Google Scholar 

  6. 6.

    E. Vernaz, A. Loida, G. Malow, J. A. C. Marples and Hj. Matzke, “Long-term Stability of High-level waste Forms,” Presented at 3rd European Community Conference on Radioactive Waste Management and Disposal,” Luxembourg, Sept 17-21, 1990.

    Google Scholar 

  7. 7.

    G.R. Lumpkin and R.C. Ewing, Phys. Chem. Minerals 16 (1988) 2.

    CAS  Article  Google Scholar 

  8. 8.

    R.C. Ewing and T.J. Headley, J. Nucl. Mater. 119 (1983) 102.

    CAS  Article  Google Scholar 

  9. 9.

    G.R. Lumpkin, R.C. Ewing, B.C. Chakoumakos, R.B. Greegor, F.W. Lytle, E.M. Foltyn, F.W. Clinard Jr., L.A. Boatner, and M.M. Abraham, J. Mater. Res. 1 (1986) 564.

    CAS  Article  Google Scholar 

  10. 10.

    G.R. Lumpkin, K.L. Smith, and R. Gieré, Micron 28 (1997) 57.

    CAS  Article  Google Scholar 

  11. 11.

    G.R. Lumpkin, K.L. Smith, M.G. Blackford, R. Gieré, and C.T. Williams, in: I.G. McKinley and C. McCombie (Eds.), Scientific Basis for Nuclear Waste Management, XXI, Mater. Res. Soc. Symp. Proc. 506 (1998) 215.

    Google Scholar 

  12. 12.

    G.R. Lumpkin, R.A. Day, P.J. McGlinn, T.E. Payne, R. Gieré, and C.T. Williams, in: D.J. Wronkiewicz and J.H. Lee. (Eds.), Scientific Basis for Nuclear Waste Management XXII, Mater. Res. Soc. Symp. Proc. 556 (1999) 793.

    CAS  Article  Google Scholar 

  13. 13.

    R.C. Ewing and L.M. Wang, Nucl. Instr. Meth. Phys. Res. B65 (1992) 319.

    CAS  Article  Google Scholar 

  14. 14.

    K.L. Smith, N.J. Zaluzec, and G.R. Lumpkin, J. Nucl. Mater. 250 (1997) 36.

    CAS  Article  Google Scholar 

  15. 15.

    S.X. Wang, L.M. Wang, R.C. Ewing, G.S. Was, and G.R. Lumpkin, Nucl. Instr. Meth. Phys. Res. B148 (1999) 704.

    Article  Google Scholar 

  16. 16.

    S.X. Wang, G.R. Lumpkin, L.M. Wang, and R.C. Ewing, Nuc. Instruments and Methods in Phys. Res. B, 166–167 (2000) 293–298.

    Article  Google Scholar 

  17. 17.

    K.L. Smith, M.G. Blackford, G.R. Lumpkin, and N.J. Zaluzec, Temperature dependence of ion irradiation induced amorphisation of zirconolite, Materials Research Society Fall 1999 Meeting, Symposium on the Scientific Basis for Nuclear Waste Management XXIII, Mat. Res. Soc. Symp. Proc., in press.

  18. 18.

    R. Cooper, K. L. Smith, M. Colella, E. R. Vance and M. Phillips, Optical Emission due to ionic displacements in alkaline earth titanate. J. Nuc. Materials, in press.

  19. 19.

    E. Sonder and W.A. Sibley, in: Point Defects in Solids. Vol. I. Ed. J.H. Crawford Jr. and L.M. Slifkin (Plenum, New York, 1972) p. 201.

    Article  Google Scholar 

  20. 20.

    B. Henderson, “Anion Vacancy Centers in Alkaline Earth Oxides”; C.R.C Crit.Rev.Solid State Mater. Sci.; 9; 1–60; [1980]

    CAS  Article  Google Scholar 

  21. 21.

    K.J. Caulfield, R. Cooper, and J.F. Boas, (1995) J Am Ceramics Soc., 78, 1054.

    CAS  Article  Google Scholar 

  22. 22.

    B.D. Evans & M. Stapelbroek “Optical Properies of the F+ Center in Crystalline Al2O3” Phys RevB, 18; 7089 [1978]

    CAS  Article  Google Scholar 

  23. 23.

    K.C. Humphreys and A.D. Kantz, Radiat. Phys. Chem., 9 (1977) 737–747.

    Google Scholar 

  24. 24.

    S.J. Zinkle and C. Kinoshita, Defect production in solids, J. Nucl. Mater. 251 (1997) 200–217.

    CAS  Article  Google Scholar 

  25. 25.

    R.E. Williford, R. Devanathan and W.J. Weber (1998) Computer simulation of displacement energies for several ceramic materials, Nuc. Instruments and Methods in Phys Res B, 141 (1998) 94–98.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katherine L. Smith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, K.L., Cooper, R., Colella, M. et al. Measured Displacement Energies of Oxygen Ions in Zirconolite and Rutile. MRS Online Proceedings Library 663, 373 (2000). https://doi.org/10.1557/PROC-663-373

Download citation